Cho hai đường tròn (O ; R) và (O' ; R') cắt nhau tại A và B (OO' >R > R').Trên nửa mặt phẳng bờ là OO' có chứa điểm A , kẻ tiếp tuyến chung MN của hai đường tròn trên (với M thuộc (O) và N thuộc (O')) . Biết BM cắt (O') tại điểm E nằm trong đường tròn (O) và đường thẳng AB cắt MN tại I.
a) Chứng minh : góc MAN + góc MBN = 180 độ và I là trung điểm của MN. b) Qua B , kẻ đường thẳng (d) song song với MN , (d) cắt (O) tại C và cắt (O') tại D ( với C, D khác B) . Gọi P,Q lần lượt là trung điểm của CD và EM . Chứng minh tam giác AME đồng dạng với tam giác ACD và các điểm A,B,P,Q cùng thuộc một đường tròn .Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét (O) có
OI là một phần đường kính
BC là dây
I là trung điểm của BC
Do đó: OI\(\perp\)BC
Xét tứ giác OAMI có
\(\widehat{OAM}+\widehat{OIM}=180^0\)
Do đó: OAMI là tứ giác nội tiếp
hay O,A,M,I thẳng hàng
Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
Chu vi hình quạt CBO là :
7,536 : 4 x 1 =1,884 (m)
Đáp số : 1,884 m
a) zì H là trung điểm của AB nên \(OH\perp AB\)hay \(\widehat{OHM}=90^0\)
theo tính chất của tiếp tuyến ta lại có \(OD\perp DM\left(hay\right)\widehat{ODM}=90^0\)
=> M,D,O,H cùng nằm trên 1đường tròn
b) Theo tính chất tiếp tuyến ta có
MC=MD=> tam giác MDC cân tại M
=> MI là 1 đương phân giác của CMD , MẶt khác I là điểm chính giữa cung nhỏ CD nên :
\(\widehat{DCI}=\frac{1}{2}sđ\widebat{DI}=\frac{1}{2}sđ\widebat{CI}=\widehat{MCI}\)
=> CI là phân giác của góc MCD .
zậy I là tâm đường tròn nội tiếp tam giác MCD