Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét (O) có
OI là một phần đường kính
BC là dây
I là trung điểm của BC
Do đó: OI\(\perp\)BC
Xét tứ giác OAMI có
\(\widehat{OAM}+\widehat{OIM}=180^0\)
Do đó: OAMI là tứ giác nội tiếp
hay O,A,M,I thẳng hàng
Cô bạn chữa câu c đề này chưa ạ có thì giúp mk với mk cũng đg cần
cô giáo mk chỉ chữa phần H đối xứng vs D qua I thôi còn 2 ý kia thì chx bn ak
a) zì H là trung điểm của AB nên \(OH\perp AB\)hay \(\widehat{OHM}=90^0\)
theo tính chất của tiếp tuyến ta lại có \(OD\perp DM\left(hay\right)\widehat{ODM}=90^0\)
=> M,D,O,H cùng nằm trên 1đường tròn
b) Theo tính chất tiếp tuyến ta có
MC=MD=> tam giác MDC cân tại M
=> MI là 1 đương phân giác của CMD , MẶt khác I là điểm chính giữa cung nhỏ CD nên :
\(\widehat{DCI}=\frac{1}{2}sđ\widebat{DI}=\frac{1}{2}sđ\widebat{CI}=\widehat{MCI}\)
=> CI là phân giác của góc MCD .
zậy I là tâm đường tròn nội tiếp tam giác MCD