\(\hept{\begin{cases}\left(a-1\right)x+y=a\\x+\left(a-1\right)y=2\end{cases}}\)
1,Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\)\(\hept{\begin{cases}m=\frac{2+y}{x}\\x+my=1\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}m=\frac{2+y}{x}\\x+\frac{2+y}{x}.y=1\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}m=\frac{2+y}{x}\\x^2+y^2+2y-x=0\end{cases}}\)
Vậy hệ thức liên hệ giữa x và y là x2+y2+2y-x=0
\(\Leftrightarrow\hept{\begin{cases}m=\frac{2+y}{x}\\x+my=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\frac{2+y}{x}\\x+\frac{2+y}{x}.y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\frac{2+y}{x}\\x^2+y^2+2y-x=0\end{cases}}\)
`{((a-1)x+y=a),(x+(a-1)y=2):}`
`<=>{(ax-x+y=a),(x+ay-y=2):}`
`<=>{(a(x-1)=x-y<=>a=[x-y]/[x-1]),(x+[x-y]/[x-1]-y=2):}`
`<=>x(x-1)+x-y-y(x-1)=2(x-1)`
`<=>x^2-x+x-y-xy+y=2x-2`
`<=>x^2-xy-2x+2=0`
_________________________________________
`b)x^2-xy-2x+2=0`
`<=>xy=x^2-2x+2`
`<=>y=x-2+2/x`
Thay `y=x-2+2/x` vào `6x^2-17y=7` có:
`6x^2-17(x-2+2/x)=7`
`<=>6x^3-17x^2+34x-34-7x=0`
`<=>6x^3-12x^2-5x^2+10x+17x-34=0`
`<=>(x-2)(6x^2-5x+17)=0`
Mà `6x^2-5x+17 > 0`
`=>x-2=0<=>x=2`
`=>y=2-2+2/2=1`
Thay `x=2;y=1` vào `(a-1)x+y=a` có: `(a-1).2+1=a<=>a=1`
BẠN NÀO CÓ THỂ GIẢI CHO TỚ BÀI NÀY CHO MỘT HÌNH VUÔNG CÓ CHU VI 16 CM.LẤY MỖI CÃNH HÌNH VUÔNG LÀM ĐƯỜNG KÍNH, NGƯỜI TA VẼ 4 NỬ HÌNH TRÒN.CHÚNG GIAO NHAU TẠO THÀNH BÔNG HOA .TÍNH DIỆN TÍCH BÔNG HOA ĐÓ
cashc làm là ta rút m ở cả hai phương trình
từ \(mx+y=1\Rightarrow m=\frac{1-y}{x}\)với x khác 0
từ \(x+my=2\Rightarrow m=\frac{2-x}{y}\) với y khác 0
từ hai điều trên ta có \(\frac{1-y}{x}=\frac{2-x}{y}\Leftrightarrow y-y^2=2x-x^2\) vậy ta có hệ thức cần tìm
Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{1}\ne\dfrac{1}{m-1}\)
=>\(\left(m-1\right)^2\ne1\)
=>\(m-1\notin\left\{1;-1\right\}\)
=>\(m\notin\left\{0;2\right\}\)
\(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=m-\left(m-1\right)x\\x+\left(m-1\right)\left[m-\left(m-1\right)x\right]=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=m-\left(m-1\right)x\\x+m\left(m-1\right)-x\left(m-1\right)^2=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=m-\left(m-1\right)x\\x\left[1-\left(m-1\right)^2\right]=2-m\left(m-1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left[\left(m-1\right)^2-1\right]=m\left(m-1\right)-2\\y=m-\left(m-1\right)x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m-1-1\right)\left(m-1+1\right)=\left(m-2\right)\left(m+1\right)\\y=m-\left(m-1\right)x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m}\\y=m-\dfrac{\left(m-1\right)\left(m+1\right)}{m}=\dfrac{m^2-m^2+1}{m}=\dfrac{1}{m}\end{matrix}\right.\)
=>\(x-y=\dfrac{m+1}{m}-\dfrac{1}{m}=1\) không phụ thuộc vào m