Cho tam giác MNP cân tại M . Gọi E là trung điểm của đoạn thẳng NP
a) CM rằng tam giác MNE = tam giác MPE, từ đó chứng minh ME là trung trực của đoạn thẳng NP
b) KẺ EK vuông góc MN tại K, kẻ EH vuông góc MP tại H . Chứng minh KH song song NP
c) Giả sử KHM=30 độ và HK= 4cm lấy điểm D trên cạnh MH sao cho MKD=15 độ. tính độ dàiMD
a, xét tma giác MNE và tam giác MPE có :
MN = MP và góc MNE = góc MPE do tam giác MNP cân tại M (Gt)
NE = EP do E là trđ của NP (gt)
=> tam giác MNE = tam giác MPE (c-g-c)
=> góc MEN = góc MEP (đn)
mà góc MEN + góc MEP = 180 (kb)
=> góc MEN = 90
=> MN _|_ NP và có M là trđ của PN (Gt)
=> ME là trung trực của NP (đn)
b, xét tam giác MKE và tam giác MHE có : ME chung
góc NME = góc PME do tam giác MNE = tam giác MPE (Câu a)
góc MKE = góc MHE = 90
=> tam giác MKE = tam giác MHE (ch-cgv)
=> MK = MH (đn)
=> tam giác MHK cân tại M (đn)
=> góc MKH = (180 - góc NMP) : 2 (tc)
tam giác MNP cân tại M (Gt) => góc MNP = (180 - góc NMP) : 2 (tc)
=> góc MKH = góc MNP mà 2 góc này đồng vị
=> KH // NP (đl)