Hai vòi nước cùng chảy vào một bể không có nước và chảy đầy bể sau 6 giờ 40 phút. Nếu chảy riêng thì vòi thứ hai chảy đầy bể nhanh hơn vòi thứ nhất là 3 giờ. Hỏi mỗi vòi chảy một mình thì sau bao lâu sẽ đầy bể ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta sẽ có số giờ đầy bể là:
2 giờ 40 +1 giờ 20=3 giờ 60
đáp số:3 giờ 60
Gọi thời gian vòi 1 ; 2 chảy một mình xong lần lượt là x ; y(ngày) (x;y > 4,8)
1 giờ vòi 1 chảy \(\dfrac{1}{x}\)(bể)
1 giờ vòi 2 chảy \(\dfrac{1}{y}\)(bể)
=> 1 giờ 2 vòi chảy \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4,8}\) (1)
Lại có y - x = 1 (2)
=> Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}y-x=1\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4,8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=x+1\\\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{1}{4,8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=x+1\\x\left(x+1\right)=4,8.\left(2x+1\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}5x^2-43x-24=0\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(10x-43\right)^2=2089\\y=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt{2089}+43}{10}\\y=\dfrac{\sqrt{2089}+53}{10}\end{matrix}\right.\)
bai 6:
P/S chi so phan be voi thu nhat chay trong 1 gio la:
1:5=1/5(be)
P/S chi so phan be voi thu hai chay trong 1 gio la:
1:7=1/7(be)
P/S chi so phan be trong 1 gio ca hai voi cung chay la:
1/5+1/7=12/35(be)
neu hai voi cung chay thi sau:
1:12/35=2gio 55 phut
minh chi lam vay thoi chu lam het thi lau lam
Đầu bài ở dạng vòi nước chảy vào bể thì ta tạm chấp nhập logic lượng nước chảy vào là hằng số (hằng số trên 1 đơn vị thời gian).
Trong thực tế vòi nước tháo ra: áp xuất trong bể càng lớn (lượng nước trong bể càng nhiều) thì lượng nước tháo ra càng nhiều. do đó cần bổ xung thêm đầu bài là lượng nước tháo ra cũng là hằng số (hằng số trên 1 đơn vị thời gian)
Hai vòi nước cùng chảy vào một bể cạn không chứa nước Nếu vòi thứ nhất chảy riêng một mình thì sau 12 giờ đầy bể Nếu vòi thứ hai chảy riêng một mình thì sau 24 giờ đầy bể hỏi Nếu cả hai vòi cùng chảy vào bể thì sau bao lâu sẽ đầy
Mỗi giờ vòi thứ nhất chảy riêng được số phần bể là:
1÷12=1/12(bể)
Mỗi giờ vòi thứ hai chảy riêng được số phần bể là:
1÷24=1/24(bể)
Mỗi giờ cả hai vòi cùng chảy được số phần bể là:
1/12+1/24= 3/24(bể)
Cả hai vòi cùng chảy thì đầy bể sau số giờ là:
1÷3/24=8(giờ)
Đáp số : 8 giờ
trong 1 giờ vòi 1 chảy được 1: 2 = \(\dfrac{1}{2}\)(bể )
trong 1 giờ vòi 2 chảy được : 1:3 = \(\dfrac{1}{3}\)(bể)
khi bể không có nước hai vòi cùng chảy thì đày bể sau:
1 : (\(\dfrac{1}{2}\)+ \(\dfrac{1}{3}\)) = \(\dfrac{5}{6}\)(giờ)
đổi \(\dfrac{5}{6}\) giờ = 1 giờ 12 phút
:
thời gian bể 1 chảy là x-1
thời gian bể một chảy trong 1 giờ là \(\frac{1}{x-1}\)
thời gian bể thứ 2 chảy là x
thời gian bể 2 chảy trong 1 giờ là \(\frac{1}{x}\)
4 giờ 48=\(\frac{24}{5}h\)
1 giờ 2 bể chảy \(1:\frac{24}{5}=\frac{5}{24}\left(h\right)\)
ta có pt:
\(\frac{1}{x}+\frac{1}{x-1}=\frac{5}{24}\)
\(24x-24+24x=5x\left(x+1\right)\)
\(48x+24=5x^2-5\)
\(5x^2-48x-29=0\)
\(\sqrt{\Delta}=2\sqrt{721}\)
\(x_1=\frac{48+2\sqrt{721}}{10}=\frac{24+\sqrt{721}}{5}\)
\(x_2=\frac{48-2\sqrt{721}}{10}\left(KTM\right)\)
vòi thứ 1 chảy số giờ là:
\(\frac{24+\sqrt{721}}{5}-1=\frac{19+\sqrt{721}}{5}\left(h\right)\)
Đổi : 6h 40' = \(6\frac{2}{3}\)h
Gọi thời gian vòi thứ nhất chảy riêng để đầy bể là x giờ (x > 3)
\(\Rightarrow\)Thời gian vòi thứ hai chảy riêng để đầy bể là x - 3 giờ
Ta có phương trình :
\(\frac{1}{x}+\frac{1}{x-3}=\frac{1}{6\frac{2}{3}}\)
\(\Leftrightarrow\frac{x-3+x}{x^2-3x}=\frac{3}{20}\)
\(\Leftrightarrow\frac{2x-3}{x^2-3x}=\frac{3}{20}\)
\(\Leftrightarrow40x-60=3x^2-9x\)
\(\Leftrightarrow3x^2-49x+60=0\)
\(\Leftrightarrow\left(x-15\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-15=0\\3x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=15\left(tm\right)\\x=\frac{4}{3}\left(ktm\right)\end{cases}}\)
Vậy thời gian vòi thứ nhất chảy một mình để bể đầy là 15 giờ
thời gian vòi thứ hai chảy một mình để bể đầy là 15 - 3 = 12 giờ