K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

Số cách chọn 3 học sinh có cả nam và nữ là

.

Do đó xác suất để 3 học sinh được chọn có cả nam và nữ là .

28 tháng 5 2018

Đáp án: D.

Số cách chọn 3 học sinh có cả nam và nữ là

.

Do đó xác suất để 3 học sinh được hcọn có cả nam và nữ là .

19 tháng 1 2017

1 nam 2 nữ

19 tháng 1 2017

giúp mình bài này với!

27 tháng 5 2017

Đáp án là C

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

\(\Omega \) là tập tất cả 6 học sinh trong 12 học sinh. Vậy \(n\left( \Omega  \right) = C_{12}^6 = 924\).

Gọi C là biến cố: “Có 3 học sinh nam và 3 học sinh nữ”. Có \(C_7^3\) cách chọn chọn 3 học sinh nam và \(C_5^3\) cách chọn 3 học sinh nữ. Theo quy tắc nhân, ta có \(C_7^3.C_5^3 = 350\) cách chọn 3 học sinh nam và 3 học sinh nữ tức là \(n\left( C \right) = 350\).Vậy \(P\left( C \right) = \frac{{350}}{{924}} \approx 0,3788\).

25 tháng 2 2019

22 tháng 12 2018

Đáp án B

25 tháng 4 2018

Đáp án C.

Phương pháp: 

Xác suất của biến cố A:

P A = n A n Ω .  

Cách giải:                                            

Số phần tử của không gian mẫu:

n Ω = C 9 3  

A: “Số học sinh nam nhiều hơn số học sinh nữ”

Ta có 2 trường hợp:  

+) Chọn ra 2 nam, 1 nữ:

+) Chọn ra 3 nam, 0 nữ.

⇒ n A = C 5 2 C 4 1 + C 5 3  

⇒ P A = n A n Ω = C 5 2 C 4 1 + C 5 3 C 9 3 = 25 42  

3 tháng 1 2017

Chọn C

Chọn mỗi tổ hai học sinh nên số phần tử của không gian mẫu là 

Gọi biến cố A: “Chọn 4 học sinh từ 2 tổ sao cho 4 em được chọn có 2 nam và 2 nữ”

Khi đó, xảy ra các trường hợp sau:

TH1: Chọn 2 nam ở Tổ 1, 2 nữ ở Tổ 2. Số cách chọn là

TH2:  Chọn 2 nữ ở Tổ 1, 2 nam ở Tổ 2. Số cách chọn là .

TH3: Chọn ở mỗi tổ 1 nam và 1 nữ. Số cách chọn là 

Suy ra, n(A) = 

Xác suất để xảy ra biến cố A là: 

15 tháng 4 2018


NV
21 tháng 4 2023

Không gian mẫu: \(C_{10}^3\)

Số cách chọn sao cho có 2 nữ 1 nam là: \(C_6^2.C_4^1\)

Xác suất: \(P=\dfrac{C_6^2.C_4^1}{C_{10}^3}=\dfrac{1}{2}\)

loading...