K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

\(\Omega \) là tập tất cả 6 học sinh trong 12 học sinh. Vậy \(n\left( \Omega  \right) = C_{12}^6 = 924\).

Gọi C là biến cố: “Có 3 học sinh nam và 3 học sinh nữ”. Có \(C_7^3\) cách chọn chọn 3 học sinh nam và \(C_5^3\) cách chọn 3 học sinh nữ. Theo quy tắc nhân, ta có \(C_7^3.C_5^3 = 350\) cách chọn 3 học sinh nam và 3 học sinh nữ tức là \(n\left( C \right) = 350\).Vậy \(P\left( C \right) = \frac{{350}}{{924}} \approx 0,3788\).

NV
21 tháng 4 2023

Không gian mẫu: \(C_{10}^3\)

Số cách chọn sao cho có 2 nữ 1 nam là: \(C_6^2.C_4^1\)

Xác suất: \(P=\dfrac{C_6^2.C_4^1}{C_{10}^3}=\dfrac{1}{2}\)

loading...    

NV
21 tháng 4 2023

Không gian mẫu:

Chọn 5 người từ 15 người để lập nhóm 1 có \(C_{15}^5\) cách, chọn 5 người từ 10 người còn lại để lập nhóm 2 có \(C_{10}^5\) cách, tổ 3 có \(C_5^5\) cách

\(\Rightarrow C_{15}^5.C_{10}^5.C_5^5\) cách chọn bất kì

Bây giờ ta tính số cách chia sao cho có ít nhất 1 nhóm không có nữ:

Do 7 nữ luôn chia được vào ít nhất 2 nhóm sao cho mỗi nhóm có 5 người, do đó chỉ có nhiều nhất 1 nhóm (trong số 3 nhóm) chỉ toàn là nam.

Chọn 1 nhóm từ 3 nhóm để xếp 5 nam: \(C_3^1\) cách

Chọn 5 nam từ 8 nam để xếp vào nhóm nói trên: \(C_8^5\) cách

Còn 10 em xếp vào 2 nhóm còn lại: \(C_{10}^5.C_5^5\) cách

\(\Rightarrow C_3^1.C_8^5.C_{10}^5.C_5^5\) cách xếp sao cho có 1 ít nhất nhóm ko có nữ

\(\Rightarrow C_{15}^5.C_{10}^5.C_5^5-C_3^1.C_8^5.C_{10}^5.C_5^5\) cách xếp thỏa mãn

Xác suất: ...

21 tháng 4 2023

Anh ơi! Câu này làm theo cách biến cố đối, hai học sinh nữ đứng cạnh nhau thì như nào ạ, em làm được trực tiếp còn làm gián tiếp không được ạ. 

https://hoc24.vn/cau-hoi/doi-tuyen-hoc-sinh-gioi-cua-mot-truong-thpt-co-8-hoc-sinh-nam-va-4-hoc-sinh-nu-trong-buoi-le-trao-phan-thuong-cac-hoc-sinh-tren-duoc-xep-thanh-mot-hang-ngang-tinh-xac-suat-de-khi-xep-sao-cho-2-hoc.7929973126107

Q(x)=x^5(3x-5)^7

Số hạng chứa x^10 sẽ tương ứng với số hạng chứa x^5 trong (3x-5)^7

SHTQ là: \(C^k_7\cdot\left(3x\right)^{7-k}\cdot\left(-5\right)^k=C^k_7\cdot3^{7-k}\cdot\left(-5\right)^k\cdot x^{7-k}\)

Số hạng chứa x^5 tương ứng với 7-k=5

=>k=2

=>Số hạng cần tìm là: 127575x^10

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số cách chọn ba học sinh bất kì là: \(C_{40}^3 = 9880\)

b)    Số cách chọn ba học sinh gồm 1 nam và 2 nữ là: \(C_{25}^1.C_{15}^2 = 2625\)

c)     Số cách chọn 3 học sinh trong đó không có học sinh nam là: \(C_{15}^3 = 455\)

Số cách chọn 3 học sinh trong đó có ít nhất một học sinh nam là: \(9880 - 455 = 9425\)

21 tháng 4 2023

Ta có: �(Ω)=�155=3003 

Gọi A là biến cố "Trong 5 học sinh được chọn có ít nhất 4 học sinh nữ".

Ta có thể chọn 4 nữ và 1 nam hoặc chon 5 nữ.

Suy ra �(�)=�94.�61+�95=882

Xác suất của biển cố A là: 

21 tháng 4 2023

Ta có: �(Ω)=�155=3003 

Gọi A là biến cố "Trong 5 học sinh được chọn có ít nhất 4 học sinh nữ".

Ta có thể chọn 4 nữ và 1 nam hoặc chon 5 nữ.

Suy ra �(�)=�94.�61+�95=882

Xác suất của biển cố A là: 

a: Số cách chọn là: \(C^3_{25}=2300\left(cách\right)\)

b: Số cách chọn là: \(C^1_{15}\cdot C^2_{24}=4140\left(cách\right)\)

 

NV
21 tháng 4 2023

Không gian mẫu: \(12!\)

Xếp 8 nam: có \(8!\) cách

8 nam tạo thành 9 khe trống, xếp 4 nữ vào 9 khe trống này: \(A_9^4\) cách

\(\Rightarrow8!.A_9^4\) cách

Xác suất: \(P=\dfrac{8!.A_9^4}{12!}=\)

NV
21 tháng 4 2023

Câu này có thể coi như không giải theo cách gián tiếp được (thực ra là có giải được nhưng ko ai giải kiểu đó hết), nó bao gồm các trường hợp 4 nữ cạnh nhau, 3 nữ cạnh nhau, 2 nữ cạnh nhau, trong đó trường hợp trước còn bao hàm trường hợp sau cần loại trừ nữa

4 tháng 3 2023

Chọn hai học sinh từ tổ sao cho 2 học sinh cùng giới có 2 công đoạn

\(CD_1:\) Chọn 1 bạn nữ trong 5 bạn nữ \(\Rightarrow\) Có 5 cách chọn

\(CD_2:\) Chọn 1 bạn nam trong 4 bạn nam \(\Rightarrow\) Có 4 cách chọn

Áp dụng quy tắc nhân, ta có : \(5.4=20\) ( cách chọn )

Vậy có 20 cách chọn 2 học sinh từ tổ để 1 bàn có 2 học sinh cùng giới

 

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Lời giải:
Chọn 2 học sinh cùng giới tính nam, có: $C^2_4=6$ cách

Chọn 2 học sinh cùng giới tính nữ, có: $C^2_5=10$ cách

Tổng số cách chọn: $6+10=16$ (cách)

Ta có: ƯC(28;24)={1;2;4}

Do đó: Có 3 cách chia