K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2020

Ta có : n \(⋮̸\)\(\Rightarrow n\)lẻ \(\Rightarrow n^2\)lẻ \(\Rightarrow4n^2\)chẵn

Mà \(3n+5\)chẵn

Suy ra \(4n^2+3n+5\)chẵn nên \(⋮\)2  ( 1 )

Ta có : n \(⋮̸\)3

\(\Rightarrow\orbr{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\)

+) n = 3k + 1 thì \(4n^2+3n+5=4\left(3k+1\right)^2+3\left(3k+1\right)+5=36k^2+33k+12⋮3\)

+) n = 3k + 2 thì \(4n^2+3n+5=4\left(3k+2\right)^2+3\left(3k+2\right)+5=36k^2+57k+27⋮3\)

vậy với n \(⋮̸\)3 thì \(4n^2+3n+5⋮3\)( 2 )

Từ ( 1 ) và ( 2 ) kết hợp với ( 2 ; 3 ) = 1 nên \(4n^2+3n+5⋮6\)

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)


b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

15 tháng 9 2016

n3 - 3n2 - n + 21

= n(n2 - 1) - 3(n2 - 7)

= n(n - 1)(n + 1) - 3(n2 - 7)

n lẻ => n2 lẻ => n2 + 7 chẵn => n2 + 7 chia hết cho 2

=> - 3(n2 - 7) chia hết cho 6 (chia hết cho 2 và 3)

mà n(n - 1)(n + 1) chia hết cho 6 (tích 3 số nguyên liên tiếp)

Vậy n3 - 3n2 - n + 21 chia hết cho 6 vs mọi n là số nguyên lẻ (đpcm)

Giúp mị vs, cần rất gấpCho A = 2.4.6.8.10.12 - 40. Hỏi A có chia hết cho 6, 8, 20 không, vì sao?Khi chia số tự nhiên a cho 36 ta được số dư là 12. Hỏi a có chia hết cho 4, 9, không, vì sao?Cho a chia hết cho c và b chia hết cho c. Chứng minh rằng : ma+nb chia hết cho c ' ma - nb chia hết cho c với m,n thuộc NChứng mình rằng tổng của ba số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp...
Đọc tiếp

Giúp mị vs, cần rất gấp

Cho A = 2.4.6.8.10.12 - 40. Hỏi A có chia hết cho 6, 8, 20 không, vì sao?

Khi chia số tự nhiên a cho 36 ta được số dư là 12. Hỏi a có chia hết cho 4, 9, không, vì sao?

Cho a chia hết cho c và b chia hết cho c. Chứng minh rằng : ma+nb chia hết cho c ' ma - nb chia hết cho c với m,n thuộc N

Chứng mình rằng tổng của ba số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp không chia hết cho 5.

Chứng minh rằng :

a) Tổng của ba số chẵn liên tiếp thì chia hết cho 6

b) Tổng của ba số lẻ liên tiếp thì không chia hết cho 6

c) Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c

d) P = a + a2 + a+....+ a2n chia hết cho a + 1, n thuộc N

e) Nếu a và b chia cho 7 có cùng một số dư thì hiệu a - b chia hết cho 7

Giúp mk lẹ lẹ đi, mk cần rất gấp gấp lắm luôn, mai kiểm tra 45' mà còn mấy bài này ko bt cách giải.

2
9 tháng 10 2019

ê bạn là antifan hay ARMY thế hở, mà nếu là ARMY thì sao lại để logo thế kia, còn nếu là anti í thì sao lại có chữ ARMY dưới phần logo và nickname hở, m là gì để tao còn biết.

29 tháng 9 2021

A chia hết cho 8 và 20, nhưng ko chia hết cho 6

17 tháng 12 2014

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

10 tháng 6 2015

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

Bài 3: 

a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bài 1: 

Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy: A có chữ số tận cùng là 0

Bài 2: 

Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)

\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)

\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)

mà \(8\left(125a+12b+c\right)⋮8\)

và \(2c+4b+d⋮8\)

nên \(abcd⋮8\)(đpcm)