Một đường thẳng cắt cạnh AB và AC của tam giác ABC lần lượt ở M và N biết AM/MB=AN/NC=4/3.
CMR a,tam giác AMN đồng dạng tam giác ABC? Tính tỉ số đồng dạng của 2 tam giác đó
b,Biết MN chia tam giác ABC thành 2 phần có hiệu diện tích bằng 132cm vuông .Tính diện tích tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có MN//BC
nên AM/MB=AN/NC
=>NC=6(cm)
b: Xét ΔABC có MN//BC
nên ΔAMN∼ΔABC
Suy ra: \(\dfrac{S_{AMN}}{S_{ABC}}=\left(\dfrac{AM}{AB}\right)^2=\left(\dfrac{4}{7}\right)^2=\dfrac{16}{49}\)
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)\(\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
M\(\in\)AB(gt)
N\(\in\)AC(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Câu 2:
a: Vì ΔABC~ΔDEF theo tỉ số đồng dạng là \(k=\dfrac{1}{2}\)
nên \(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{EF}=k=\dfrac{1}{2}\)
=>\(\dfrac{6}{DE}=\dfrac{8}{DF}=\dfrac{BC}{20}=\dfrac{1}{2}\)
=>\(DE=6\cdot2=12;DF=8\cdot2=16;BC=\dfrac{20}{2}=10\)
Chu vi tam giác ABC là:
10+6+8=24
Chu vi tam giác DEF là:
12+16+20=48
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
=>\(BD=3\cdot\dfrac{10}{7}=\dfrac{30}{7};CD=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\)
1: \(S=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
2: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=HC\cdot BC\)
3: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
=>AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN∼ΔACB
TK
1: S = 8 ⋅ 6 2 = 24 ( c m 2 ) 2: Xét ΔABC vuông tại A có AH là đường cao nên A C 2 = H C ⋅ B C 3: Xét ΔAHB vuông tại H có HM là đường cao nên A M ⋅ A B = A H 2 ( 1 ) Xét ΔAHC vuông tại H có HN là đường cao nên A N ⋅ A C = A H 2 ( 2 ) Từ (1) và (2) suy ra A M ⋅ A B = A N ⋅ A C =>AM/AC=AN/AB Xét ΔAMN vuông tại A và ΔACB vuông tại A có AM/AC=AN/AB Do đó: ΔAMN∼ΔACB
Bài 1:
a: M thuộc AB
\(AM=\dfrac{1}{2}AB\)
Do đó: M là trung điểm của AB
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\)
nên MN//BC
Xét ΔAMN và ΔABC có
\(\widehat{AMN}=\widehat{ABC}\)(hai góc đồng vị, MN//BC)
\(\widehat{MAN}\) chung
Do đó: ΔAMN~ΔABC
b: ΔAMN~ΔABC
=>\(k=\dfrac{MN}{BC}=\dfrac{1}{2}\)
Bài 2:
a) Xét\(\Delta AMN\)và \(\Delta ABC\)có:
\(\widehat{A}\)chung
\(\frac{AM}{MB}=\frac{AN}{NC}\)
\(\Rightarrow\Delta AMN\)đồng dạng \(\Delta ABC\)
Tỉ số đồng dạng \(\frac{1}{2}\)
bn ơi, sao bn bt tỉ số đồng dạng là 1/2 vậy? mình không hiểu chỗ này lắm