chứng minh rằng : đa thức \(x^5-3x^4+6x^3+6x^2+9x-6\)không có nghiệm nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhẩm nghiệm ta lấy ước của hệ số tự do đem chia cho 1
thay vào rồi thì sẽ biết
BÀI 1:
Tìm số tự nhiên n sao cho \(19+3^n\)là số chính phương
BÀI 2:
cho a,b,c là các số thực thỏa mãn: \(1\le a\), \(b,c\le3\)và \(a+b+c=6\)
Tìm GTLN: \(M=a^2+b^2+c^2\)
(Lớp 8 mà học đa thức bất khả quy rồi sao???)
Em tìm hiểu sơ về 2 khái niệm sau đây trên mạng: "đa thức bất khả quy" và "tiêu chuẩn Eisenstein".
1. Đa thức hệ số nguyên gọi là bất khả quy nếu không phân tích được thành 2 nhân tử bậc nhỏ hơn với hệ số nguyên (bậc của chúng >=1).
2. Tiêu chuẩn Eisenstein: Nếu tồn tại \(p\) nguyên tố thoả mãn:
- Hệ số cao nhất không chia hết cho \(p\).
- Mọi hệ số khác đều chia hết cho \(p\).
- Riêng hệ số tự do không chia hết cho \(p^2\).
Thì đa thức này bất khả quy.
-----
Nếu em đã hiểu được 2 khái niệm trên thì lời giải như sau:
Xét số nguyên tố \(3\). Nhận thấy theo tiêu chuẩn Eisenstein thì đa thức \(Q\left(x\right)\) bất khả quy. Xong!
1.Gọi a,b,c là độ dài 3 cạnh tam giác vuông ABC, c là cạnh huyền.
Ta có \(a^2+b^2=c^2;a,b,c\in\)N* , diện tích tam giác ABC là \(S=\frac{ab}{2}\)
Trước hết ta chứng minh ab chia hết cho 12.
+ Chứng minh \(ab⋮3\): Nếu cả a và b đồng thời không chia hết cho 3 thì \(a^2+b^2\)chia 3 dư 2. Suy ra số chính phương \(c^2\)chia 3 dư 2, vô lí.
+ Chứng minh \(ab⋮4\): - Nếu a,b chẵn thì \(ab⋮4\)
- Nếu trong hai số a,b có số lẻ, chẳng hạn a lẻ.
Lúc đó c lẻ. Vì nếu c chẵn thì \(c^2⋮4\), trong lúc \(a^2+b^2\)không thể chia hết cho 4. Đặt \(a=2k+1,c=2h+1,k,h\in N\)
Ta có: \(b^2=\left(2h+1\right)^2-\left(2k+1\right)^2=4\left(h-k\right)\left(h+k+1\right)\)
\(=4\left(h-k\right)\left(h-k+1\right)+8k\left(h-k\right)⋮8\)
Suy ra \(b⋮4\). Nếu ta chia cạnh AB (chẳng hạn) thành 6 phần bằng nhau, nối các điểm chia với C thì tam giác ABC được chia thành 6 tam giác, mỗi tam giác có diện tích bằng \(\frac{ab}{2}\)là một số nguyên.
2. Với \(a\in Z,\)ta có: \(P\left(a\right)=a^5-3a^4+6a^3-3a^2+9a-6\)
Nếu a chia hết cho 3 thì tất cả các số hạng trong P(a) đều chia hết cho 9, trừ số hạng cho 6, do đó P(a) không chia hết cho 9, nghĩa là \(P\left(a\right)\ne0\).
Nếu a không chia hết cho 3 thì \(a^5\)không chia hết cho 3 trong khi tất cả các số hạng khác trong P(a) đều chia hết cho 3, do đó P(a) không chia hết cho 3, nghĩa là \(P\left(a\right)\ne0\). Vậy \(P\left(a\right)\ne0\)với mọi \(a\in Z\).
MT phục vụ cậu
\(P\left(x\right)=x^5-3x^4+6x^3-3x^2+9x-6=0\)
Vậy phuwong trình vô nghiệm.
1023 chia hết cho 3 không chia hết cho 9
vt: Phải chia hết cho 3 => x=3t khi x=3t thì vế trái chia hết cho 9 => đpcm
a) Sửa đề: \(A=\left(3x-2\right)\left(9x^2+6x+4\right)-3x\left(9x^2-2\right)\)
\(=27x^3-8-27x^3+6=-2\)
b: Ta có: \(B=\left(3x+5\right)^2+\left(6x+10\right)\left(2-3x\right)+\left(2-3x\right)^2\)
\(=\left(3x+5+2-3x\right)^2\)
=49