Tính:
\(\overset{lim}{x\rightarrow4}\) \(\frac{3+\sqrt{7}}{x^2-16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-1}{2x}=\lim\limits_{x\rightarrow0}\frac{2x}{2x\left(\sqrt{1+2x}+1\right)}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{1+2x}+1}=\frac{1}{2}\)
b) \(\lim\limits_{x\rightarrow0}\frac{4x}{\sqrt{9+x}-3}=\lim\limits_{x\rightarrow0}\frac{4x\left(\sqrt{9+x}+3\right)}{x}=\lim\limits_{x\rightarrow0}[4\left(\sqrt{9+x}+3\right)=24\)
c) \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}=\lim\limits_{x\rightarrow2}\frac{x-2}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=\lim\limits_{x\rightarrow2}\frac{1}{\sqrt{x+7}+3}=\frac{1}{6}\)
d) \(\lim\limits_{x\rightarrow1}\frac{3x-2-\sqrt{4x^2-x-2}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\frac{\left(3x-2\right)^2-\left(4x^2-4x-2\right)}{(x^2-3x+2)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(5x-6\right)}{\left(x-1\right)\left(x-2\right)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\frac{1}{2}\\ \\\\ \\ \\ \\ \)
e)\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\frac{2x+7-\left(x^2-8x+16\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x-9\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{x-9}{\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=-8\)
f) \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}-3}{2-\sqrt{x+3}}=\lim\limits_{x\rightarrow1}\frac{(2x-2)\left(2+\sqrt{x+3}\right)}{\left(1-x\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\frac{-2\left(2+\sqrt{x+3}\right)}{\sqrt{2x+7}+3}=\frac{-4}{3}\)
g) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}=\lim\limits_{x\rightarrow0}\frac{x^2\left(\sqrt{x^2+16}+4\right)}{x^2\left(\sqrt{x^2+1}+1\right)}=4\)
h)
\(\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-3}{x-4}+\lim\limits_{x\rightarrow4}\frac{3-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{1}{\sqrt{x+5}+4}+\lim\limits_{x\rightarrow4}\frac{8-2x}{\left(x-4\right)\left(3+\sqrt{2x+1}\right)}=\frac{1}{7}-\frac{1}{3}=\frac{-4}{21}\)
k) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+1}+1}+\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+4}+2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^3-3x+2}{x^4-4x+3}=\lim\limits_{x\rightarrow1}\dfrac{\left(x+2\right)\left(x-1\right)^2}{\left(x^2+2x+3\right)\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\dfrac{x+2}{x^2+2x+3}=\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow2^-}\dfrac{x^3+x^2-4x-4}{x^2-4x+4}=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-2\right)\left(x^2+3x+2\right)}{\left(x-2\right)^2}=\lim\limits_{x\rightarrow2^-}\dfrac{x^2+3x+2}{x-2}=-\infty\)
\(\lim\limits_{x\rightarrow2}\dfrac{\left(x^2-x-2\right)^{20}}{\left(x^3-12x+16\right)^{10}}=\lim\limits_{x\rightarrow2}\dfrac{\left(x+1\right)^{20}\left(x-2\right)^{20}}{\left(x+4\right)^{10}\left(x-2\right)^{20}}=\lim\limits_{x\rightarrow2}\dfrac{\left(x+1\right)^{20}}{\left(x+4\right)^{10}}=\dfrac{3^{10}}{2^{10}}\)
\(\lim\limits_{x\rightarrow0^-}\dfrac{4x^2+5x}{x^2}=\lim\limits_{x\rightarrow0^-}\dfrac{4x+5}{x}=-\infty\)
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{x+2}-1}{\sqrt{x+5}-2}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(\sqrt{x+5}+2\right)}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{x+5}+2}{\sqrt{x+2}+1}=2\)
\(\lim\limits_{x\rightarrow4}\frac{2x-\sqrt{3x+1}}{x^2-1}=\frac{8-\sqrt{11}}{15}\)
Nhưng mình đoán bạn ghi nhầm đề, x tiến tới 1 mới có lý
\(\lim\limits_{x\rightarrow1}\frac{2x-\sqrt{3x+1}}{x^2-1}=\lim\limits_{x\rightarrow1}\frac{4x^2-3x-1}{\left(x-1\right)\left(x+1\right)\left(2x+\sqrt{3x+1}\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(4x+1\right)}{\left(x-1\right)\left(x+1\right)\left(2x+\sqrt{3x+1}\right)}=\lim\limits_{x\rightarrow1}\frac{4x+1}{\left(x+1\right)\left(2x+\sqrt{3x+1}\right)}=\frac{5}{2\left(2+2\right)}=\frac{5}{8}\)
\(\lim\limits_{x\rightarrow8}\frac{\sqrt[3]{x}-2+2-\sqrt{x-4}}{x-8}=\lim\limits_{x\rightarrow8}\frac{\frac{x-8}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}-\frac{x-8}{2+\sqrt{x-4}}}{x-8}\)
\(=\lim\limits_{x\rightarrow8}\left(\frac{1}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}-\frac{1}{2+\sqrt{x-4}}\right)=\frac{1}{12}-\frac{1}{4}=-\frac{1}{6}\)
a: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x}-\sqrt[3]{x^2+7}}{x^2-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x}-2+2-\sqrt[3]{x^2+7}}{x^2-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{5-x-4}{\sqrt{5-x}+2}+\dfrac{8-x^2-7}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left(x^2+7\right)^2}}}{x^2-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1-x}{\sqrt{5-x}+2}+\dfrac{1-x^2}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left(x^2+7\right)^2}}}{x^2-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(1-x\right)\left(\dfrac{1}{\sqrt{5-x}+2}+\dfrac{1+x}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left(x^2+7\right)^2}}\right)}{-\left(1-x\right)\left(1+x\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{\sqrt{5-x}+2}+\dfrac{1+x}{4+2\sqrt[3]{x^2+7}+\sqrt[3]{\left(x^2+7\right)^2}}}{-\left(1+x\right)}\)
\(=\dfrac{\dfrac{1}{\sqrt{5-1}+2}+\dfrac{1+1}{4+2\cdot\sqrt[3]{1^2+7}+\sqrt[3]{\left(1+7\right)^2}}}{-\left(1+1\right)}\)
\(=\dfrac{\dfrac{1}{2+1}+\dfrac{2}{4+2\cdot2+4}}{-2}\)
\(=\dfrac{\dfrac{1}{3}+\dfrac{1}{6}}{-2}=-\dfrac{1}{4}\)
b: \(\lim\limits_{x\rightarrow4}\dfrac{x^2-4x}{x^2+x-20}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{x\left(x-4\right)}{x^2+5x-4x-20}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{x\left(x-4\right)}{\left(x+5\right)\left(x-4\right)}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{x}{x+5}=\dfrac{4}{4+5}=\dfrac{4}{9}\)
a: \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+8}-4}{x-4}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2x+8-16}{\sqrt{2x+8}+4}\cdot\dfrac{1}{x-4}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2\left(x-4\right)}{\sqrt{2x+8}+4}\cdot\dfrac{1}{x-4}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2}{\sqrt{2x+8}+4}=\dfrac{2}{\sqrt{2\cdot4+8}+4}\)
\(=\dfrac{2}{\sqrt{8+8}+4}=\dfrac{2}{4+4}=\dfrac{2}{8}=\dfrac{1}{4}\)
b: \(\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{\sqrt{4x+1}-3}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{\dfrac{4x+1-9}{\sqrt{4x+1}+3}}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{4\left(x-2\right)}\cdot\left(\sqrt{4x+1}+3\right)\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x+2\right)\left(\sqrt{4x+1}+3\right)}{4}\)
\(=\dfrac{\left(2+2\right)\left(\sqrt{4\cdot2+1}+3\right)}{4}=\sqrt{9}+3=6\)
c: \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-\sqrt{x+2}}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\dfrac{4-x-2}{2+\sqrt{x+2}}}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-x}\cdot\left(\sqrt{x+2}+2\right)\)
\(=\lim\limits_{x\rightarrow2}\left(-\sqrt{x+2}-2\right)\)
\(=-\sqrt{2+2}-2=-2-2=-4\)
1: \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+1}-\sqrt{x+5}}{x-4}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2x+1-x-5}{\sqrt{2x+1}+\sqrt{x+5}}\cdot\dfrac{1}{x-4}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{x-4}{x-4}\cdot\dfrac{1}{\sqrt{2x+1}+\sqrt{x+5}}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{1}{\sqrt{2x+1}+\sqrt{x+5}}=\dfrac{1}{\sqrt{2\cdot4+1}+\sqrt{4+5}}\)
\(=\dfrac{1}{\sqrt{9}+\sqrt{9}}=\dfrac{1}{6}\)
2: \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1-x}-\sqrt{1+x}}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{1-x-1-x}{\sqrt{1-x}+\sqrt{1+x}}\cdot\dfrac{1}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-2x}{x\cdot\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-2}{\sqrt{1-x}+\sqrt{1+x}}=\dfrac{-2}{\sqrt{1-0}+\sqrt{1+0}}\)
\(=\dfrac{-2}{1+1}=-1\)
Vậy nó ko phải dạng vô định, cứ thay số trực tiếp
\(=\frac{2}{0}=+\infty\)
Nếu là mũ 3 thì nó là dạng 0/0 rút gọn được. Nên chắc là đề ghi nhầm đấy
Đề đúng đó chứ bạn?
\(\lim\limits_{x\rightarrow4}\frac{3+\sqrt{7}}{x^2-16}=\frac{3+\sqrt{7}}{0}=+\infty\)
Đây ko phải dạng vô định nên cứ thay số thôi
Mong mọi người giúp mik ạ đang rất cần