cho hình vuông ABCD, điểm e nằm bất kì trên đoạn CD, Tia phân giác góc DAE cắt CD tại M, phân giác góc BAE cắt BC tại N
CM MN vuông góc AE
tính chu vi CMN biết AB=a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi F là gđ của IK và AE. Cm IA là phân giác của góc DIF. Qua A kẻ đt vuông góc với AK, cắt CD tại M.
Bạn cm các cặp tg bằng nhau : tg ADM = tgABK => tg AMI = tg AKI => đpcm
Kẻ IM\(\perp\)AE
Xét ΔADI vuông tại D và ΔAMI vuông tại M có
AI chung
\(\widehat{DAI}=\widehat{MAI}\)
Do đó: ΔADI=ΔAMI
=>AD=AM
mà AD=AB
nên AM=AB
Xét ΔAMK và ΔABK có
AM=AB
\(\widehat{MAK}=\widehat{BAK}\)
AK chung
Do đó: ΔAMK=ΔABK
=>\(\widehat{AMK}=\widehat{ABK}=90^0\)
\(\widehat{IMK}=\widehat{IMA}+\widehat{KMA}\)
\(=90^0+90^0=180^0\)
=>I,M,K thẳng hàng
=>IK\(\perp\)AE
a: Xét ΔADM vuông tại D và ΔAHM vuông tại H có
AM chung
\(\widehat{DMA}=\widehat{HMA}\)
Do đó: ΔADM=ΔAHM
=>AD=AH
mà AD=AB
nên AH=AB
b: Xét ΔAHN vuông tại H và ΔABN vuông tại B có
AN chung
AH=AB
Do đó: ΔAHN=ΔABN
c: \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}\)
\(=\dfrac{1}{2}\left(\widehat{DAH}+\widehat{BAH}\right)\)
\(=\dfrac{1}{2}\cdot90^0=45^0\)