Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ IM\(\perp\)AE
Xét ΔADI vuông tại D và ΔAMI vuông tại M có
AI chung
\(\widehat{DAI}=\widehat{MAI}\)
Do đó: ΔADI=ΔAMI
=>AD=AM
mà AD=AB
nên AM=AB
Xét ΔAMK và ΔABK có
AM=AB
\(\widehat{MAK}=\widehat{BAK}\)
AK chung
Do đó: ΔAMK=ΔABK
=>\(\widehat{AMK}=\widehat{ABK}=90^0\)
\(\widehat{IMK}=\widehat{IMA}+\widehat{KMA}\)
\(=90^0+90^0=180^0\)
=>I,M,K thẳng hàng
=>IK\(\perp\)AE
Kẻ MK⊥AE tại K
Xét ΔADM vuông tại D và ΔAKM vuông tại K có
AM chung
\(\widehat{DAM}=\widehat{KAM}\)
Do đó: ΔADM=ΔAKM
=>AD=AK
mà AD=AB
nên AK=AB
Xét ΔAKN và ΔABN có
AK=AB
\(\widehat{KAN}=\widehat{BAN}\)
AN chung
Do đó: ΔAKN=ΔABN
=>\(\widehat{AKN}=\widehat{ABN}=90^0\)
=>NK\(\perp\)AE
mà MK\(\perp\)AE
và MK,NK có điểm chung là K
nên MN\(\perp\)AE
Gọi F là gđ của IK và AE. Cm IA là phân giác của góc DIF. Qua A kẻ đt vuông góc với AK, cắt CD tại M.
Bạn cm các cặp tg bằng nhau : tg ADM = tgABK => tg AMI = tg AKI => đpcm