K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

Kẻ phân giác IH của \(\widehat{BIC}\)

Ta có \(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=120^0\)

Mà BI,CI là phân giác \(\widehat{ABC};\widehat{ACB}\Rightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^0\)

Xét tam giác IBC: \(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)

\(\Rightarrow\widehat{BIH}=\widehat{CIH}=\dfrac{1}{2}\widehat{BIC}=60^0\)

Lại có \(\widehat{BIE}=\widehat{DIC}=180^0-\widehat{BIC}=60^0\) (kề bù)

Do đó \(\widehat{BIH}=\widehat{CIH}=\widehat{BIE}=\widehat{DIC}\)

\(\left\{{}\begin{matrix}\widehat{BIH}=\widehat{BIE}\\BI\text{ chung}\\\widehat{IBE}=\widehat{IBH}\end{matrix}\right.\Rightarrow\Delta BEI=\Delta BHI\left(g.c.g\right)\\ \Rightarrow EI=HI\left(1\right)\\ \left\{{}\begin{matrix}\widehat{CIH}=\widehat{DIC}\\CI\text{ chung}\\\widehat{HIC}=\widehat{DIC}\end{matrix}\right.\Rightarrow\Delta CDI=\Delta CHI\left(g.c.g\right)\\ \Rightarrow DI=HI\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow IE=ID\)

11 tháng 7 2018

có phải giải ko ạ

17 tháng 1 2017

Mình không vẽ hình nhé

a)Ta có: BC=\(4\sqrt{2}\)

Vậy BC=\(4\sqrt{2}\)

b)Xét hai tam giác vuông ADB và ADC có:

                           AB=AC( giả thiết)

                          \(\widehat{ABD}=\widehat{ACD}\)(giả thiết)

Do đó ADB=ADC( cạnh huyền - góc nhọn)

Suy ra DB=DC( hai cạnh tương ứng)

Mà \(D\in BC\)( giả thiết)

\(\Rightarrow\)D là trung điểm của BC

Vậy D là trung điểm của BC

c)Ta có ADB=ADC( cạnh huyền - góc nhọn)( chứng minh trên)

Suy ra \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)

\(\Rightarrow\)\(\widehat{BAD}=\widehat{CAD}=\frac{\widehat{BAC}}{2}=\frac{90^0}{2}=45^0\)

Xét tam giác AED có:

\(\widehat{CAD}=45^0\)( chứng minh trên)

\(\widehat{AED}=90^0\left(DE⊥AC\right)\)

Do đó tam giác AED vuông cân tại E

Vậy tam giác AED vuông cân tại E

d) Vì D là trung điểm của BC

Suy ra BD=DC=\(\frac{4\sqrt{2}}{2}=2\sqrt{2}\)(cm)

Áp dung định lí Pi-ta-go vào tam giác ADC vuông tại D có

\(AD^2+DC^2=AC^2\)

hay \(AD^2=4^2-\left(2\sqrt{2}\right)^2\)

hay \(AD^2=16-8=8\)

\(\Rightarrow AD=\sqrt{8}\)(cm)

Vậy \(AD=\sqrt{8}\left(cm\right)\)

22 tháng 7 2019

Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath

Tham khảo bài 3 tại link trên nhé!