Chứng minh rằng: 2/3.5 + 2/5.7 + 2/7.9 + ... + 2/97.99 > 8/25
Giúp mk với!!!!!
PLEASE!!!!!🙏🙏🙏👏
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tử số của phân số đó là:a.
Mẫu số của phân số đó là:b.
Ta có: a/b = 32/60 => a = 32/60xb
Mà: a+b=161
Thay a = 32/60xb vào a+b=161 ta được:
32/60xb+b=161
Quy đồng mẫu số, ta có:
32xb+60xb=161x60
92xb=9660
b=9660:92=105
Tử số là: 161-105=56
Vậy phân số đó là: 56/105.
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
A = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/95 - 1/97 + 1/97 - 1/99
A = 1/3 - 1/99
A = 32/99
BẠN TICK CHO MÌNH NHA !
\(B=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
\(=2.(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{97.99})\)
\(=2.(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99})\)
\(=2.(\dfrac{1}{3}-\dfrac{1}{99})\)
\(=2.\dfrac{1}{297}\)
=\(\dfrac{2}{297}\)
Bài làm:
Ta có: Đặt \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}=32\%\)
=> Biểu thức trên > 32%
=> đpcm
Dạ đề nghị bạn Vũ Ngọc Tuấn không spam linh tinh lên bài làm nữa nhé!
cậu lên mạng gõ là các bước cơ bản trong cầu lông đi.Lúc trước mình cũng học ở đóchúc cậu mai thi tốt
Bạn ơi , bạn xem lại đề nhé! Mình làm thế này không biết có đúng đề không nữa?
Ta có \(a^2+c^2\ge0\) (gt) mà \(a^2\ge0 \forall a, c^2\ge0 \forall c\)=> \(a\ne0 , c\ne0\)=> \(b\ne0\)( vì \(ab=c^2\))
Với \(a,b,c \ne0\), \(ab=c^2\)=> \(\frac{a}{c}=\frac{c}{b}\)
=> \(\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2\)
=> \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\) mà \(\frac{a}{c}=\frac{c}{b}\)
=> \(\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)\(=\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{99-97}{97\cdot99}\)\(=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}+\frac{7}{5\cdot7}-\frac{5}{5\cdot7}+...+\frac{99}{97\cdot99}-\frac{97}{97\cdot99}\)\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)\(=\frac{1}{3}-\frac{1}{99}\)\(=\frac{32}{99}>\frac{8}{25}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Nhận thấy : \(\frac{32}{99}>\frac{8}{25}\left(32>8;99>25\right)\)