So sánh hai số: \(\sqrt[1995]{1996!}\)và \(1+\sqrt[1995]{1995!}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :1996! = 1.2.3 . ... . 1995 . 1996
: 1995! = 1.2.3 . ... . 1995
=> 1996! > 1995 !
=> \(\sqrt[1995]{1996}>\sqrt[1995]{1995!}\)
1995/1996 = 1/1996
1996/1997 = 1/1997
1/1996 > 1/1997 nên 1995/1996 < 1996/1997
1- 1995/1996=1/1996
1-1996/1997=1/1997
1/1996>1/1997->1995/1996<1996/1997
Ta có B = (1995+1996)/(1996+1997)
B = 1995/1996+1997 + 1996/1996+1997
Lại có : 1995/1996+1997 < 1995/1996 (1) (Vì mẫu p/s này mà lớn hơn p/s kia thì p/s này sẽ nhỏ hơn p/s có mẫu nhỏ hơn)
1996/1996+1997 < 1996/1997 (2) (__________________________________________________________________)
Từ (1) và (2) => A > B
(Việc tích cho người khác mất có lâu lắm đâu mà chúng mày cứ đăng câu hỏi rồi chép ko của họ mà ko biết cảm ơn họ chỉ bằng 1 cái k . Đây là nói riêng cho 1 số người trên online math này có tính đấy thì hãy bỏ đi)
tớ nghĩ A lớn hơn B
Bởi vì A=1,9989...
còn B=0,9994....
ta có 1995/1996=1-1/1996
1996/1997=1-1/1997
vì 1/1996>1/1997 suy ra 1995/1996<1996/1997
ta có 1-1995/1996=1/1996
1-1996/1997=1/1997
vì 1/1996>1/1997
=>1995/1996<1996/1997
Ta lấy phần bù
\(1-\frac{1996}{1997}=\frac{1}{1997}\)
\(1-\frac{1995}{1996}=\frac{1}{1996}\)
\(\frac{1}{1997}< \frac{1}{1996}\)
Nhưng vì tìm phần bù nên ta đảo dấu
\(\Rightarrow\frac{1995}{1996}< \frac{1996}{1997}\)
a) \(\frac{1995}{1997}\)và \(\frac{1995}{1996}\)
Ta có : \(\frac{1995}{1996}=\frac{1995\times2}{1996\times2}=\frac{3990}{3992}\)
\(1-\frac{1995}{1997}=\frac{2}{1997};1-\frac{3990}{3992}=\frac{2}{3992}\)
Vì \(\frac{2}{1997}>\frac{2}{3992}\)nên \(\frac{1995}{1997}< \frac{3990}{3992}\)hay \(\frac{1995}{1997}< \frac{1995}{1996}\).
b) \(\frac{2016}{2017}\)và \(\frac{2017}{2018}\)
Ta có : \(1-\frac{2016}{2017}=\frac{1}{2017};1-\frac{2017}{2018}=\frac{1}{2018}\)
Vì \(\frac{1}{2017}>\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\).
c) \(\frac{2018}{2019}\)và \(\frac{2017}{2016}\).
Vì \(\frac{2018}{2019}< 1;1< \frac{2017}{2016}\)nên \(\frac{2018}{2019}< \frac{2017}{2016}\).
~ HOK TỐT ~
ta có bđt \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\) với mọi \(a+b\ge0\) và \(n\inℝ\)
\(1+\sqrt[1995]{1995}=2\sqrt[1995]{\left(\frac{1+\sqrt[1995]{1995}}{2}\right)^{1995}}\le2\sqrt[1995]{\frac{1+1995}{2}}=2\sqrt[1995]{\frac{1996}{2}}\)
\(=\sqrt[1995]{2^{1994}.1996}=\sqrt[1995]{2.2...2.1996}< \sqrt[1995]{2.3...1995.1996}=\sqrt[1995]{1996!}\)