K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

Đặt A=(2x+1)(2x+2)(2x+3)(2x+4)

Ta có: 2x⋅Alà tích của 5 số tự nhiên liên tiếp nên 2x⋅A⋮5

Nhưng 2x⋮̸ 5, do đó A⋮5

Nếu y≥1y≥1, ta có (2x+1)(2x+2)(2x+3)(2x+4)−5y⋮5

11879⋮̸ 5⇒y≥1 không thỏa mãn suy ra y=0

Khi đó pt⇔(2x+1)(2x+2)(2x+3)(2x+4)−1=11879

⇔(2x+1)(2x+2)(2x+3)(2x+4)=11880

⇔(2x+1)(2x+2)(2x+3)(2x+4)=9⋅10⋅11⋅12⇔x=3

Vậy {x=3

y=0 là 2 số tự nhiên cần tìm

5 tháng 1 2017

(2x + 1) . (2x + 2) . (2x + 3) . (2x + 4) - 5y = 11879

[(2x + 1). (2x + 4)].[(2x + 2) . (2x + 3)] -5y = 11879

(4x2+10x+4).(4x2+10x+6) -5y = 11879

Đặt t= 4x2+10x+4

t(t+2) -5y = 11879

t2+2t-5y = 11879

(t+1)2 = 11880+5y

(4x2+10x+5)2 = 5(2376+y)

=> x = 0; y=-2371

5 tháng 1 2017

thanks

Bài 2: 

a: Ta có: \(2^{x+1}\cdot3^y=12^x\)

\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

24 tháng 12 2021

Kiểm tra lại đề câu b nhé!

a,(2x+1)(y-3)=12

⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}

2x+11-12-23-3
y-312-126-64-4
x0-11212−32−321-2
y15-9937-1

=>x=0,y=15

 

c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)

\(25^{36}=\left(5^2\right)^{36}=5^{72}\)

Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)

mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)

nên \(6^{50}< 5^{70}\)

mà \(5^{70}< 5^{72}\)

nên \(6^{50}< 5^{72}\)

hay \(36^{25}< 25^{36}\)

AH
Akai Haruma
Giáo viên
28 tháng 1 2024

a/

Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12. 

$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$

Nếu $2x+1=1\Rightarrow y-3=12$

$\Rightarrow x=0; y=15$

Nếu $2x+1=3\Rightarrow y-3=4$

$\Rightarrow x=1; y=7$ 

Vậy...........

AH
Akai Haruma
Giáo viên
28 tháng 1 2024

b/

$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$

$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)

Lấy (2) trừ (1) theo vế thì:

$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$

$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$

$2^x(2^{2016}-1)=2^3(2^{2016}-1)$

$\Rightarrow 2^x=2^3$

$\Rightarrow x=3$