Cho tam giác ABC, M thuộc BC, kẻ ME song song CA, MD song song AB. Gọi I là trung điểm của DE. Chứng minh A đối xứng với M qua I
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BMNP có
BM//NP
NM//BP
Do đó: BMNP là hình bình hành
Xét ΔABC có
N là trung điểm của CA
NP//AB
Do đó: P là trung điểm của BC
b: Sửa đề; HB//AP
Xét ΔABC có
N là trung điểm của AC
NM//BC
Do đó: M là trung điểm của AB
Xét tứ giác AHBP có
M là trung điểm chung của AB và HP
=>AHBP là hình bình hành
Bạn tự vẽ hình nha
a) Xét tứ giác AIMN có:
MI // AC
MN // AB
=> AIMN là HBH có Â = 90o
=> AIMN là HCN.
b) Ta có: +) MN // AB
M là trung điểm của AB (gt)
=> N là trung điểm của AC (1)
+) D đối xứng với I qua N
=> N là trung điểm của DI (2)
Tứ giác AICD có hai đường chéo AC và DI cắt nhau tại trung điểm N của mỗi đường.
=> AICD là HBH
a: Xét tứ giác AKMN có
MN//AK
AN//MK
Do đó: AKMN là hình bình hành
mà \(\widehat{NAK}=90^0\)
nên AKMN là hình chữ nhật
b: Xét ΔAMQ có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAMQ cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc MAQ(1)
Xét ΔAME có
AK là đường cao
AK là đường trung tuyến
DO đó: ΔAME cân tại A
mà AK là đường cao
nên AK là tia phân giác của góc MAE(2)
Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)
hay Q,E,A thẳng hàng
Xét tứ giác AEMD có
MD//AE
ME//AD
Do đó: AEMD là hình bình hành
Suy ra: Hai đường chéo AM và ED cắt nhau tại trung điểm của mỗi đường
hay A và M đối xứng nhau qua I