K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

nghiệm nguyên dưng  của phương trình là các hoán vị của(1,2,3)

13 tháng 2 2020

0 1 2 3 4 5 6 7 8 9

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
24 tháng 3 2016

x+y+z=xyz+1

Giả sử x lớn hơn =y lớn hơn =z

=> 3x> xyz+1 >xyz

=> 3> yz

do y,z nguyên dương nnee tìm đc y,z

24 tháng 3 2016

bạn khó hiểu chỗ nào

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Lời giải:

$2xyz=x+y+z$

$2=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}$

Không mất tổng quát giả sử $x\geq y\geq z$ 

$\Rightarrow xy\geq xz\geq yz$

$\Rightarrow \frac{1}{xy}\leq \frac{1}{xz}\leq \frac{1}{yz}$

$\Rightarrow 2\leq \frac{3}{yz}$$

$\Rightarrow yz\leq \frac{3}{2}$. Mà $yz$ nguyên dương nên $yz=1$

$\Rightarrow y=z=1$. Thay vào pt ban đầu:

$2x=x+2$

$x=2$

Vậy $(x,y,z)=(2,1,1)$ và hoán vị.

24 tháng 4 2016

Câu hỏi không rõ nhé bạn. bạn hỏi đầy đủ hơn