Cho tam giác MNP vuông tại N.Tính MN biết MP=8cm,NP=10cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)\(\Rightarrow5^2+12^2=BC^2\Rightarrow169=BC^2\Rightarrow BC=13\left(cm\right)\)
b. Tam giác MNP là tam giác vuông vì \(6^2+8^2=10^2\)
Chúc bạn học tốt!
áp dụng định lí Py Ta GO vào tam giác vuông MNP ta có
\(NP^2=NM^2+NP^2\)
\(NP=\sqrt{MN^2+MP^2}=\sqrt{8^2+6^2}=10cm\)
a) Xét ΔMNP và ΔHMP có:
Góc MPN chung
Góc NMP = góc MHP (= \(90^o\))
⇒ ΔMNP ~ ΔHMP (g.g)
b) Áp dụng định lí Pytago vào Δ vuông MNP:
\(MP^2=NP^2-MN^2\)
\(MP^2=10^2-6^2\)
\(MP^2=64\)
⇒ MP = 8
Xét ΔMNP có ND là phân giác ⇒ \(\dfrac{MD}{MN}=\dfrac{DP}{NP}\)
hay \(\dfrac{MD}{6}=\dfrac{DP}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{MD}{6}=\dfrac{DP}{10}=\dfrac{MD+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
⇒ \(\dfrac{DP}{10}=\dfrac{1}{2}\) ⇒ DP = \(\dfrac{10}{2}\) = 5
Đề cs sai k bạn ???
+) Xét \(\Delta\)MNP vuông tại M
\(\Rightarrow NP^2=MN^2+MP^2\) ( đính lsi Py-ta-go)
\(\Rightarrow NP^2=10^2+10^2\)
\(\Rightarrow NP^2=100+100=200\)
\(\Rightarrow NP=\sqrt{200}\) ( cm) ( do NP > 0 )
Xét ΔMNP vuông tại M có MH là đường caop
nên \(NM^2=NH\cdot NP\)
=>\(NP\cdot7=10^2=100\)
=>\(NP=\dfrac{100}{7}\left(cm\right)\)
ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(MP^2=NP^2-MN^2=\left(\dfrac{100}{7}\right)^2-10^2=\dfrac{5100}{49}\)
=>\(MP=\dfrac{10\sqrt{51}}{7}\left(cm\right)\)
\(\widehat{HMP}+\widehat{HMN}=90^0\)
\(\widehat{HMN}+\widehat{N}=90^0\)
=>\(\widehat{HMP}=\widehat{N}\)
Xét ΔMNP vuông tại M có \(sinN=\dfrac{MP}{NP}\)
=>\(sinHMP=\dfrac{10\sqrt{51}}{7}:\dfrac{100}{7}=\dfrac{\sqrt{51}}{10}\)
Tính NP
Xét \(\Delta\)MNP vuông tại M
Ta có NP2 = MN2 + MP2
và MN = 8 cm
và MP = 4 cm
=> NP2 = 82 + 42
=> NP2 = 64 + 16
=> NP2 = 80
=> NP = \(\sqrt{\text{80}}\) = 4\(\sqrt{\text{5}}\) cm.
Ta có: \(MP^2+NP^2=6^2+8^2=100\)
\(MN^2=10^2=100\)
Do đó: \(MP^2+NP^2=MN^2\)(=100)
Xét ΔMNP có \(MP^2+NP^2=MN^2\)(cmt)
nên ΔMNP vuông tại N(Định lí Pytago đảo)
a)Xét tam giác MNP vuông tại M.Theo định lí pytago:
MP2=NP2−MN2=102−82=36
=> MP=6(cm)
b) Ta có:
sinN=MPNP=610=35
cosN=MNNP=810=45
tgN=MPMN=68=34
cotgN=MNMP=86=43
=>sinP=cosN=45;cosP=sinN=35;tgP=cotgN=43;cotgP=tgN=34
Xét \(\Delta MNP\left(\widehat{A}=90^0\right)\)có:
\(PM^2=PN^2+NM^2\)( định lý py-ta-go )
\(\Leftrightarrow8^2=10^2+MN^2\)
Đề sai, bởi vì không thể cạnh huyền lại bé hơn cạnh góc vuông được??