Cho tam giác MNP có NMP =120 độ. Trên nửa mặt phẳng bờ NP không chứa M vẽ tam giác đều NPQ. Kẻ QH và QI lần lượt vuông góc với MN và MP tại H và I. Chứng minh
a. Hai góc MNQ và MPQ bù nhau, tam giác QHN = tam giác QIP
b. MQ = MN + MP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNQ vuông tại M và ΔHNQ vuông tại H có
NQ chung
\(\widehat{MNQ}=\widehat{HNQ}\)
Do đó: ΔMNQ=ΔHNQ
b: ta có: ΔMNQ=ΔHNQ
nên NM=NH
hay ΔNHM cân tại N
mà \(\widehat{MNH}=60^0\)
nên ΔNHM đều
a) Xét ΔMNH vuông tại H và ΔMPH vuông tại H có
MN=MP(ΔMNP cân tại M)
MH chung
Do đó: ΔMHN=ΔMPH(cạnh huyền-cạnh góc vuông)
Suy ra: HN=HP(hai cạnh tương ứng)
b) Xét ΔINH vuông tại I và ΔEPH vuông tại E có
HN=HP(cmt)
\(\widehat{N}=\widehat{P}\)(Hai góc ở đáy của ΔMNP cân tại M)
Do đó: ΔINH=ΔEPH(cạnh huyền-góc nhọn)
Suy ra: HI=HE(Hai cạnh tương ứng)
Xét ΔHIE có HI=HE(cmt)
nên ΔHIE cân tại H(Định nghĩa tam giác cân)
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
a) Xét \(\Delta MNK\left(\widehat{M}=90^o\right)\) và \(\Delta QNK\left(\widehat{Q}=90^o\right)\) có:
\(\widehat{MNK}=\widehat{QNK}\) (giả thiết)
\(NK\) là cạnh chung
\(\Rightarrow\Delta MNK=\Delta QNK\left(ch.gn\right)\)
b) Vì \(\Delta MNK=\Delta QNK\left(cmt\right)\)
\(\Rightarrow MN=QN\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta MNQ\) cân tại \(N\)
Mà \(\widehat{MNQ}=60^o\)
\(\Rightarrow\Delta MNQ\) đều
Vì \(NK\) là tia phân giác \(\widehat{MNP}\) (giả thiết)
\(\Rightarrow\widehat{MNK}=\widehat{QNK}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^o}{2}=30^o=\widehat{NPK}\)
\(\Rightarrow\Delta NKP\) cân tại \(K\)
c) Vì \(\Delta NMQ\) đều (chứng minh trên)
\(\Rightarrow NM=MQ=NQ=8cm\)
Xét \(\Delta NMP\left(\widehat{M}=90^o\right)\) có:
\(PN=2MN=2.8=16cm\)
\(\Rightarrow PQ=16-8=8cm\)
a: Xét ΔMNK vuông tại M và ΔQNK vuông tại Q có
NK chung
\(\widehat{MNK}=\widehat{QNK}\)
Do đó: ΔMNK=ΔQNK
b: Ta có: ΔMNK=ΔQNK
nên NM=NQ
=>ΔNMQ cân tại N
mà \(\widehat{MNQ}=60^0\)
nên ΔMNQ đều
Xét ΔNKQ có
\(\widehat{KPN}=\widehat{KNP}\)
nên ΔNKQ cân tại K
c: Xét ΔMNP vuông tại M có
\(\cos N=\dfrac{MN}{NP}\)
=>NP=16(cm)
=>\(MP=8\sqrt{3}\left(cm\right)\)
a: Xet ΔKNP vuông tại K và ΔHPN vuông tại H có
NP chung
góc KNP=góc HPN
=>ΔKNP=ΔHPN
b: ΔKNP=ΔHPN
=>góc ENP=góc EPN
=>ΔENP cân tại E
c: Xét ΔMKE vuông tại K và ΔMHE vuông tại H có
ME chung
MK=MH
=>ΔMKE=ΔMHE
=>góc KME=góc HME
=>ME là phân giác của góc NMP