CMR: nếu \(\frac{AB}{CD}\)=\(\frac{MN}{PQ}\)thì \(\frac{AB+CD}{CD}\)=\(\frac{MN+PQ}{PQ}\):\(\frac{AB-CD}{CD}\)=\(\frac{MN-PQ}{PQ}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HQ
Hà Quang Minh
Giáo viên
11 tháng 1
Ta có: \(\frac{{AB}}{{CD}} = \frac{2}{3}\) và \(\frac{{MN}}{{PQ}} = \frac{4}{6} = \frac{2}{3}\)
Vậy \(\frac{{AB}}{{CD}} = \frac{{MN}}{{PQ}}\).
LT
0
do AB/CD=MN/PQ => AB.PQ=MN.CD
TA CÓ: AB.PQ=MN.CD=>AB.PQ+CD.PQ=MN.CD+CD.PQ=>PQ(AB+CD)=CD(MN+PQ)=>AB+CD/CD=MN+PQ/PQ
TA CÓ: AB.PQ=MN.CD=>AB.PQ-CD.PQ=MN.CD-CD.PQ=>PQ(AB-CD)=CD(MN-PQ)=>AB-CD/CD=MN-PQ/PQ
NHỚ