K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

\(C=x^3+x^2y-2x^2-x^2y-xy^2+2xy+2y+2x-2\)

\(C=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

Thay x+y-2 =0 vào C ta được:
\(C=x^2\cdot0-xy\cdot0+2\cdot0+2=2\)

9 tháng 2 2020

\(C=x^3+x^2y-2x^2-x^2y-xy^2+2xy+2y+2x-2\)

\(=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2y+2x-4\right)+2\)

\(=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

Thay \(x+y-2=0\)vào biểu thức ta được: \(C=2\)

21 tháng 3 2022

khó quá

gianroi

21 tháng 3 2022

Đề sai r bn, nếu x,y thay đổi thì tổng biểu thức cũng thay đổi

24 tháng 7 2017

Đáp án: A

25 tháng 4 2022

\(A=5x^2y-xy^2+4xy+6\)             bậc : 3

a)\(B=-5x^2y+xy^2-4xy-6\)

b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)

\(C=-5x^2y+xy^2-6xy-5\)

25 tháng 4 2022

cảm ơn bn

\(A=2x+xy^2-x^2y-2y\)

\(=2\left(x-y\right)-xy\left(x-y\right)\)

\(=\left(x-y\right)\left(2-xy\right)\)

\(=\left(-\dfrac{1}{2}-\dfrac{-1}{3}\right)\left(2-\dfrac{-1}{2}\cdot\dfrac{-1}{3}\right)\)

\(=\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\cdot\left(2-\dfrac{1}{6}\right)\)

\(=\dfrac{-1}{6}\cdot\dfrac{11}{6}=-\dfrac{11}{36}\)

15 tháng 10 2023

Sửa đề: \(A=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)

\(A=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x-y\right)\left(x+y\right)+2x+2y+3\)

\(=-x^2+y^2+\left(-x+y\right)-2+3\)

\(=-\left(x-y\right)\left(x+y\right)-\left(x-y\right)+1\)

\(=\left(x-y\right)\left(-x-y-1\right)+1\)

\(=\left(x-y\right)\left(1-1\right)+1=1\)

a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)

\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)

b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)

\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)

c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)

\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)

 

1 tháng 6 2019

D   =   ( x 3   +   y 3 )   –   x y ( x   +   y )     =   ( x   +   y ) ( x 2   –   x y   +   y 2 )   –   x y ( x   +   y )     =   ( x   +   y ) ( x 2   –   x y   +   y 2   –   x y )     =   ( x   +   y ) [ x ( x   –   y )   –   y ( x   –   y ) ]     =   ( x   +   y ) ( x   –   y ) 2

 

Vì x = y ó x – y = 0 nên D   =   ( x   +   y ) ( x   –   y ) 2   =   0

Đáp án cần chọn là: D

17 tháng 9 2019

Ta có

B   =   x 3   +   x 2 y   –   x y 2   –   y 3     =   x 2 ( x   +   y )   –   y 2 ( x   +   y )   =   ( x 2   –   y 2 ) ( x   +   y )     =   ( x   –   y ) ( x   +   y ) ( x   +   y )   =   ( x   –   y ) ( x   +   y ) 2

 

Thay x = 3,25 ; y = 6,57 ta được

B   =   ( 3 , 25   –   6 , 75 ) ( 3 , 25   +   6 , 75 ) 2     =   - 3 , 5 . 10 2   =   - 350

 

Đáp án cần chọn là: B

1: =(2x+y-2y)(2x+y+2y)

=(2x-y)(2x+3y)

2: =(4-5x)(16+20x+25x^2)

3: =x(x^2-2xy+y^2-4)

=x[(x-y)^2-4]

=x(x-y-2)(x-y+2)

4: =(x-y)(x^2+xy+y^2)+xy(x-y)

=(x-y)(x^2+2xy+y^2)

=(x-y)(x+y)^2

28 tháng 7 2023

1: =(2x+y-2y)(2x+y+2y)

=(2x-y)(2x+3y)

2: =(4-5x)(16+20x+25x^2)

3: =x(x^2-2xy+y^2-4)

=x[(x-y)^2-4]

=x(x-y-2)(x-y+2)

4: =(x-y)(x^2+xy+y^2)+xy(x-y)

=(x-y)(x^2+2xy+y^2)

=(x-y)(x+y)^2

 

 

21 tháng 12 2021

\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)

\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)

\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)

\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)

\(\Rightarrow M=0+2019\)

\(\Rightarrow M=2019\)

24 tháng 2 2022