K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

A B C H D E F 1 2

a. Vì \(\Delta ABC\)cân tại A  \(\Rightarrow\)AB = AC, góc B = góc C.

Xét \(\Delta ABH\)và \(\Delta ACH\)có :

AB = AC

AH là cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền - cạnh góc vuông).

b.Vì \(\Delta ABH=\Delta ACH\)\(\Rightarrow\)góc AHB = góc AHC ( góc tương ứng )

Mà góc AHB +AHC = 180 độ ( kề bù ) => góc AHB = AHC = 90 độ => AH\(\perp\)BC.

c.Xét tam giac HDB và HEC có :

HB = HC ( vì tg ABH = ACH )

góc B = góc C

=> tam giác HDB = HDC ( cạnh huyền - góc nhọn )

=>BD = CE ( cạnh tương ứng )

Vì AB = AC => AD = AE.

Vì tg AHB = AHC => góc A1 = A2 ( góc tương ứng )

Xét tg AFD và AFE có :

AD = AE

Góc A1 = A2

AF là canh chung

=> Tg AFD = AFE ( c-g-c)

=> góc ADF = AEF ( góc tương ứng )

Ta có : góc A + ADF + AEF = góc A + ABC + ACB = 180 độ

=> 2.ADF = 2.ABC => Góc ADF = ABC mà 2 góc này nằm ở vị trí đồng vị => DE \(//\)BC.

24 tháng 3 2020

A B C H D E

a) Xét \(\Delta BAH\)và \(\Delta CAH\)có: 

AH chung

\(\widehat{BAH}=\widehat{CAH}\)(AH là phân giác \(\widehat{BAC}\))

AB=AC (\(\Delta\)ABC cân tại A)

=> \(\Delta BAH=\Delta CAH\left(cgc\right)\)

b) Có AH là phân giác \(\widehat{BAC}\left(gt\right)\)\(\Delta\)ABC cân tại A (gt)

=> AM là đường phân giác trong của tam giác ABC cân tại A

=> AM trung với đường cao và đường trung tuyến

=> AM _|_ BC(đpcm)

d)

5 tháng 1 2021

a, xét tam giác ABH à tg ACH có AH chung

^BAH = ^CAH do AH là pg

AB = AC (gt)

=> tg ABH = tg ACH (c-g-c)

b, tg ABH = tg ACH (câu a )

=> ^AHC = ^AHB 

mà ^AHC + ^AHB = 180

=> ^AHC = 90

=> AH _|_ BC

c, xét tam giác ADH và tam giác AEH có : AE chung

^ADH = ^AEH = 90

^bah = ^cah

=> Tg ADH= tg AEH (ch-gn)

=> AE = AD 

=> tg AED cân tại A => ^ADE = (180 - ^BAC) : 2

tg ABC cân tại A => ^ABC = (180 - ^bac) : 2

=> ^ade = abc

mà ^ade đồng vị ^abc

=> de // bc

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

31 tháng 1 2019

a) Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta AHC\left(Ch-gn\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{HAC}\)
b) Ta có : HB=HC (cma ) 
Mà HB + HC = BC 
=> HB = HC = 4 cm
Xét \(\Delta ABH\)vuông tại H có : AB2=HA2+BH2 (Pytago)
=> AH2 = AB2 - HB2 
=> AH2 = 52 - 42 = 9 
=> AH = 3 (cm)
c) Xét \(\Delta HBD\)và \(\Delta HEC\)có:
HB = HC (cma)
\(\widehat{HDB}=\widehat{HEC}\left(=90^o\right)\)
=> \(\Delta HBD=\Delta HEC\left(Ch-gn\right)\)
=> HD = HC ( 2 cạnh tương ứng)
=> \(\Delta HDE\)cân tại H 

1 tháng 2 2019

Góc BAH =góc HAC là 2 góc tương ứng 

HẢ BN

4 tháng 5 2018

a, Ta có ∆ABC cân ở A(gt)

AH\(\perp\) BC=>AH là đường cao

(1)=>AH đồng thời là trung tuyến=>HB=HC

(2)=>AH đồng thời là phân giác=>góc BAH=góc CAH

b, Áp dụng định lí pyta go cho ∆ABH ta có

AB2=AH2+BH2 =>52=42+HB2=>HB=√52--42=3

4 tháng 5 2018

d, Xét ∆DHB và ∆EHC có

Góc HDB=góc HEC =90°(HD\(\perp\) AB, HE vuông góc ACgt)

Góc B=góc C ( tam giác ABC cân tai A gt)

HB =HC (cmt)

=> ∆DHB=∆EHC(ch-cgv)=>HD=HE=>∆HDE cân tại H

b) Xét ΔBAH vuông tại H và ΔCAH vuông tại H có 

BA=CA(ΔBAC cân tại A)

AH chung

Do đó: ΔBAH=ΔCAH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔDHB vuông tại D và ΔEHC vuông tại E có 

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔDHB=ΔEHC(Cạnh huyền-góc nhọn)

Suy ra: HD=HE(Hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

câu a đâu rồi bạn ơi ???