K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2021

a, xét tam giác ABH à tg ACH có AH chung

^BAH = ^CAH do AH là pg

AB = AC (gt)

=> tg ABH = tg ACH (c-g-c)

b, tg ABH = tg ACH (câu a )

=> ^AHC = ^AHB 

mà ^AHC + ^AHB = 180

=> ^AHC = 90

=> AH _|_ BC

c, xét tam giác ADH và tam giác AEH có : AE chung

^ADH = ^AEH = 90

^bah = ^cah

=> Tg ADH= tg AEH (ch-gn)

=> AE = AD 

=> tg AED cân tại A => ^ADE = (180 - ^BAC) : 2

tg ABC cân tại A => ^ABC = (180 - ^bac) : 2

=> ^ade = abc

mà ^ade đồng vị ^abc

=> de // bc

8 tháng 2 2020

A B C H D E F 1 2

a. Vì \(\Delta ABC\)cân tại A  \(\Rightarrow\)AB = AC, góc B = góc C.

Xét \(\Delta ABH\)và \(\Delta ACH\)có :

AB = AC

AH là cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền - cạnh góc vuông).

b.Vì \(\Delta ABH=\Delta ACH\)\(\Rightarrow\)góc AHB = góc AHC ( góc tương ứng )

Mà góc AHB +AHC = 180 độ ( kề bù ) => góc AHB = AHC = 90 độ => AH\(\perp\)BC.

c.Xét tam giac HDB và HEC có :

HB = HC ( vì tg ABH = ACH )

góc B = góc C

=> tam giác HDB = HDC ( cạnh huyền - góc nhọn )

=>BD = CE ( cạnh tương ứng )

Vì AB = AC => AD = AE.

Vì tg AHB = AHC => góc A1 = A2 ( góc tương ứng )

Xét tg AFD và AFE có :

AD = AE

Góc A1 = A2

AF là canh chung

=> Tg AFD = AFE ( c-g-c)

=> góc ADF = AEF ( góc tương ứng )

Ta có : góc A + ADF + AEF = góc A + ABC + ACB = 180 độ

=> 2.ADF = 2.ABC => Góc ADF = ABC mà 2 góc này nằm ở vị trí đồng vị => DE \(//\)BC.

24 tháng 3 2020

A B C H D E

a) Xét \(\Delta BAH\)và \(\Delta CAH\)có: 

AH chung

\(\widehat{BAH}=\widehat{CAH}\)(AH là phân giác \(\widehat{BAC}\))

AB=AC (\(\Delta\)ABC cân tại A)

=> \(\Delta BAH=\Delta CAH\left(cgc\right)\)

b) Có AH là phân giác \(\widehat{BAC}\left(gt\right)\)\(\Delta\)ABC cân tại A (gt)

=> AM là đường phân giác trong của tam giác ABC cân tại A

=> AM trung với đường cao và đường trung tuyến

=> AM _|_ BC(đpcm)

d)

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

11 tháng 2 2021

A) Xét ΔABD và ΔEBD có:

+) AB=BE (gt)

+) góc ABD= góc EBD (do BD là phân giác góc B)

+) BD chung

=> ΔABD = ΔEBD (c-g-c)

b)

Qua C kẻ đường thẳng vuông góc với BD tại H.

Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B

=> ΔBCF cân tại B (tính chất)

=> BC= BF (điều phải chứng minh)

c)

Xét ΔABC và ΔEBF có:

+) AB = EB (gt)

+) góc B chung

+) BC= BF (câu b)

=> ΔABC = ΔEBF (c-g-c)

d)

Từ ý a, ΔABD = ΔEBD (c-g-c)

=> góc BAD= góc BED = 90

=> DE ⊥ BC

Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D

=> D là trực tâm

=> FD ⊥ BC 

=> DE trùng với FD

=> D,E,F thẳng hàng