Tìm điều kiện của tham số m để nghiệm của hệ phương trình
\(\hept{\begin{cases}x+2y=m-1\\2x-y=m+3\end{cases}}\)
có nghiệm duy nhất (a,b) và \(a^2+b^2\) nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=m-1\\4x-2y=2m+6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{3m+5}{5}\\y=2x-m-3=\frac{m-5}{5}\end{matrix}\right.\)
\(\Rightarrow P=a^2+b^2=\frac{1}{25}\left[\left(3m+5\right)^2+\left(m-5\right)^2\right]\)
\(=\frac{2}{5}\left(m^2+2m+5\right)=\frac{2}{5}\left(m+1\right)^2+\frac{8}{5}\ge\frac{8}{5}\)
Dấu "=" xảy ra khi \(m=-1\)