chứng minh biểu thức sau không phụ thuộc vào biến
B=\(\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow B=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)\)
\(\Leftrightarrow B=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)
\(\Leftrightarrow B=\left(x^3-x^3\right)+\left(-3x^2-3x^2+6x^2\right)+\left(3x-3x\right)+\left(-1-1-6\right)\)
\(\Leftrightarrow B=-8\)
Vậy biểu thức trên không phụ thuộc vào biến x (Đpcm)
\(\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)
\(=\left(x-y\right)^3-1-3\left(x-y\right).1\left(x-y-1\right)-\left[\left(x-y\right)^3+1+3\left(x-y\right).1\left(x-y+1\right)\right]+6\left(x-y\right)^2\)
\(=-2-3\left(x-y\right)\left(x-y-1\right)-3\left(x-y\right)\left(x-y+1\right)+6\left(x-y\right)^2\)
\(=-2-3\left(x-y\right)\left(x-y-1+x-y+1\right)+6\left(x-y\right)^2\)
\(=-2-3\left(x-y\right).2\left(x-y\right)+6\left(x-y\right)^2\)
\(=-2-6\left(x-y\right)^2+6\left(x-y\right)^2=-2\)
Vậy biểu thức trên ko phụ thuộc vào biến. Chúc bạn học tốt.
\(A=x^2-16-6x-2x^2+x^2+6x+9=-7\\ B=\left(x^2+4\right)\left(x^2-4\right)-x^4+9\\ B=x^4-16-x^4+9=-7\)
a) \(A=\left(x+4\right)\left(x-4\right)-2x\left(3+x\right)+\left(x+3\right)^2\)
\(=x^2-16-2x^2-6x+x^2+6x+9=-7\)
b) \(B=\left(x^2+4\right)\left(x+2\right)\left(x-2\right)-\left(x^2+3\right)\left(x^2-3\right)\)
\(=\left(x^2+4\right)\left(x^2-4\right)-\left(x^4-9\right)\)
\(=x^4-16-x^4+9=-7\)
mẹo của những câu này là: kết quả cuối cùng LUÔN LÀ HỆ SỐ TỰ DO
câu a ta thấy 3(x^2-8y^3+10) có 3x10 là hstd => 30
b:có hstd 1 ở (2x-1)(x^2+x-1) 25 ở bt(x-5)^2 và hstd 2 ở 2(x+1)(x^2-x+1) và 14 ở -7(x-2)
->hstd là 1+25+2+14=42
mấy cái tách thì khai triển hết ra rồi loại hết đi :v
nếu mình nhìn thiếu gì thì bạn bỏ qua cho mn nhé. đây chỉ là mẹo thôi
mn sắp thi r. chào b. chúc b học tốt
\(B=\left(x-1\right)^3-\left(x+1\right)^3+6.\left(x+1\right).\left(x-1\right)\)
\(B=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6.\left(x^2-1\right)\)
\(B=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6.\left(x^2-1\right)\)
\(B=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)
\(B=-8.\)
\(\Rightarrow\) Biểu thức B không phụ thuộc vào biến (đpcm).
Vậy biểu thức B không phụ thuộc vào biến.
Chúc bạn học tốt!
B=\(^{x^3}\)-\(^{3x^2}\)+\(^{3x}\)-1-\(^{x^3}\)-\(^{3x^2}\)-3x-1+6(\(^{x^2}\)-1)
B=\(^{-6x^2}\)+2+6(\(^{x^2}\)-1)
B=\(^{-6x^2}\)+2+\(^{6x^2}\)-6
B= -4
Vậy biểu thức B có giá trị ko phụ thuộc vào biến
Học tốt nha