K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2020

b)Ta có \(17⋮\left(2a+3\right)\)

\(\Rightarrow\left(2a+3\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

Ta có bảng

2a+3-17-1117
2a-20-4-214
a-10-2-17

Vậy...

Chúc bn học tốt!

#TM

30 tháng 1 2020

\(A = | x -5 | +11\)

\(A =|x-5|+11\)\(\ge\)\(11\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(x -5=0\)

                           \(\Leftrightarrow\)\(x =5\)

\(Vậy : Min A = 11 <=> x = 5\)

17 tháng 3 2020

b)A=\(\left|2x-6\right|\)+7

Do \(\left|2x-6\right|\)\(\ge\)0 với mọi x\(\inℝ\)

=>\(\left|2x-6\right|\)+7\(\ge\)7 với mọi x\(\inℝ\)

Dấu bằng xảy ra <=>2x-6=0 <=> 2 x = 6 <=> x=3

Vậy minA=7 tại x=3

18 tháng 3 2020

B2 :

Theo bài ra,ta có : \(x-1⋮x+6\)

\(\Rightarrow x+6-7⋮x+6\)

Mà \(x+6⋮x+6\)

\(\Rightarrow7⋮x+6\)

\(\Rightarrow x+6\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x\in\left\{-5;-7;1;-13\right\}\)để  \(x-1⋮x+6\)

b) Theo bài ra, ta có : A nhỏ nhất

\(\Rightarrow\left|3a-1\right|\)nhỏ nhất

Mà \(\left|3a-1\right|\ge0\)

\(\Rightarrow\left|3a-1\right|=0\)

\(\Rightarrow A=0-5\)

\(\Rightarrow A=-5\)

Vậy A có GTNN là -5

Theo bài ra, ta có A nhỏ nhất :

=> | 3a - 1 | nhỏ nhất

Mà 3a - 1  > 0

=> | 3a - 1 | = 0

=> 3a - 1 = 0

=> 3a = 0 + 1

=> 3a = 1

=> a = 1 : 3

Mà 1 lại không chia hết cho 3 

=> \(a\in\varnothing\)

Vậy ko tìm đc GTNN của A

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

24 tháng 11 2021

tl mình nha

24 tháng 11 2021

a) \(A=\left(x-1\right)\left(x-3\right)+11\)

\(=x\left(x-3\right)-\left(x-3\right)+11\)

\(=x^2-3x-x+3+11\)

\(=x^2-4x+14\)

\(=\left(x^2-4x+4\right)+10\)

\(=\left(x-4\right)^2+10\)

Vì \(\left(x-4\right)^2\) ≥ 0

⇒ A ≥ 10

Min A=10 ⇔ x=4

b) tương tự

28 tháng 1 2018

a) Ta có  \(\left|1-x\right|\ge0\)

Dấu "=" xảy ra khi \(x=1\)và khi đó A đạt gấ trị nhỏ nhất

b) Ta có 
\(x+5=x+3+2\)chia hết cho \(x+3\)\(\Rightarrow\)\(2\)chia hết cho \(x+3\)\(\Rightarrow\)\(\left(x+3\right)\inƯ\left(2\right)\)

\(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)

Do đó :

\(x+3=1\Rightarrow x=1-3=-2\)

\(x+3=-1\Rightarrow x=-1-3=-4\)

\(x+3=2\Rightarrow x=2-3=-1\)

\(x+3=-2\Rightarrow x=-2-3=-5\)

Vậy \(x=\left\{-2;-4;-1;-5\right\}\)

Chúc bạn học tốt 

b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=2