cho a,b,c thỏa mãn: \(\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức : A=\(A=\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}\times b^{2018}\times c^{2019}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
1
a) Ta có \(\frac{b^2-c^2}{\left(a+b\right).\left(a+c\right)}=\frac{\left(b+c\right)\left(b-c\right)}{\left(a+b\right).\left(a+c\right)}=\frac{\left(b+c\right)\left(a+b-a-c\right)}{\left(a+b\right).\left(a+c\right)}\)
\(=\frac{\left(b+c\right)\left(a+b\right)-\left(b+c\right).\left(a+c\right)}{\left(a+b\right).\left(a+c\right)}=\frac{b+c}{a+c}-\frac{b+c}{a+b}\)
Tương tự \(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c+a}{b+a}-\frac{c+a}{b+c}\)
\(\frac{a^2-b^2}{\left(c+a\right).\left(c+b\right)}=\frac{a+b}{c+b}-\frac{a+b}{c+a}\)
Do đó \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}+\frac{a^2-b^2}{\left(c+a\right).\left(c+b\right)}\)
\(=\frac{b+c}{a+c}-\frac{b+c}{a+b}+\frac{c+a}{b+a}-\frac{c+a}{b+c}+\frac{a+b}{c+b}-\frac{a+b}{c+a}\)
\(=\frac{b+c-a-b}{a+c}+\frac{a+b-c-a}{b+c}+\frac{c+a-b-c}{a+b}\)
\(=\frac{c-a}{a+c}+\frac{b-c}{b+c}+\frac{a-b}{a+b}\)