Cho tam giác ABC cân tại A , BH vuông góc AC tại H . Trên cạnh BC lấy điểm M bất kì ( M khác B và C ) . Gọi D , E , F là chân đường vuông góc hạ từ M đến AB , AC , BH
a ) Chứng minh \(\Delta DBM=\Delta FMB\)
b ) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đối .
c ) Trên tia đối của tia CA lấy điểm K sao cho CK = EH
Chứng minh BC đi qua trung điểm của đoạn thẳng DK
Tham khảo: Câu hỏi của Lưu Đức Mạnh
Câu c) Qua D kẻ đường thẳng song song với AC cắt BC tại G
+) ^DGB = ^ACB ( đồng vị )
\(\Delta\)ABC cân tại A => ^ACB = ^ABC
=> ^DGB = ^ABC = ^^DBG => \(\Delta\)DBG cân => DB = DG (1)
+) Có FM //AC ( cùng vuông BH ) => ^FMB = ^ACB = ^ABC ( đồng vị; \(\Delta\)ABC cân )
Xét \(\Delta\)BDM vuông tại D và \(\Delta\)MFB vuông tại F có: BM chung ; ^FMB = ^DBM ( = ^ABC )
=> \(\Delta\)BDM = \(\Delta\)MFB
=> DB = FM ( 2)
Từ (1) ; (2) => FM = DG
Dễ chứng minh FMEH là hình chữ nhật => FM = EH
=> DG = EH = CK (3)
+) Gọi I là giao điểm BC và DK
Xét \(\Delta\)GDI và \(\Delta\)CKI có:
^GDI = ^CKI ( so le trong )
DG = CK ( theo 3)
^DGI = ^KCI ( so le trong )
=> \(\Delta\)GDI = \(\Delta\)CKI
=> DI = KI
=> I là trung điểm của KD
=> BC qua trung điểm KD