K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2020

x, y nguyên dương 

=> x, y >0

Ta có: y : 4 dư 0; 1; 2; 3 => \(y^2\): 4 dư 0; 1

Vì 32\(⋮\)

=> \(3^x\): 4 dư 0 hoặc 1 

Mà x >0 => \(3^x\): 4 dư 1  (1)

Với x là số lẻ => x = 2k + 1

=> \(3^{2k+1}=3^{2k}.3\):4 dư 3 loại vì (1)

=> x là số chẵn => x = 2k (k nguyên dương )

Khi đó: \(3^{2k}-32=y^2\)

<=> \(\left(3^k-y\right)\left(3^k+y\right)=32\)

Vì x, y nguyên dương => \(3^k+y>3^k-y>1\)

Có thể xảy ra 2 TH

TH1: \(\hept{\begin{cases}3^k+y=16\\3^k-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}3^k=9\\y=7\end{cases}\Leftrightarrow\hept{\begin{cases}k=2\\y=7\end{cases}}}\)=> x  = 4; y = 7 thử lại thỏa mãn

TH2: \(\hept{\begin{cases}3^k+y=8\\3^k-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}3^k=6\\y=2\end{cases}}\)loại

Vậy x = 4 ; y= 7 

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin avt1536386_60by60.jpgWrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

NV
24 tháng 1 2022

- Với \(x=1\Rightarrow y=1\)

- Với \(x>1\Rightarrow y>1\)

\(\Rightarrow3^x=2^y+1\)

Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)

Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm) 

\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)

\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)

\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)

\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)

Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)

14 tháng 11 2024

dòng 3 dưới lên sao lại suy ra 2^a = 2 ạ

29 tháng 8 2021

ai giúp em bài1 và phần b bài 2 với ạ

 

NV
29 tháng 3 2021

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)

\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)

\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)

\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)

Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)

\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)

6 tháng 3 2022

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra