Cho tam giác ABC . Trên cạnh BC lấy điểm D ( D khác B, C) Gọi M là trung điể của AD. Trên tia đối của tia MB lấy điểm E sao cho ME=MB Trên tia đối của tia MC láy điểm F sao cho MF=MC . CMR
a)AE//BD
b) AF//BC
c) 3 điểm A,E,F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hbh
=>AE=BD
b: Xét ΔABC có góc ACB<góc ABC
nên AB<AC
Xét ΔABC có
AB<AC
BD,CD lần lượt là hình chiếu của AB,AC trên BC
=>BD<CD
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hbh
=>AF//DC
=>AF//BC
mà AE//BC
nên F,A,E thẳng hàng
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hìnhbình hành
=>AE=BD
b: góc ACB<góc ABC
=>AB<AC
=>DB<DC
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hình bình hành
=>AF//DC
=>F,A,E thẳng hàng
https://olm.vn/hoi-dap/detail/204652944487.html tham khao nha
A,Xét \(\Delta AME\)và\(\Delta DMB\)có
AM=DM (gt)
BM=EM (gt)
AME^=DMB^ (đối đỉnh)
\(=>\Delta AME=\Delta DMB\left(c-g-c\right)\)
\(=>AE=BD\)
B,Xét \(\Delta AMF\)và \(\Delta DMC\)có:
\(DM=AM\left(gt\right)\)
\(CM=FM\left(gt\right)\)
AMF^=CMC^(Đối đỉnh)
\(=>\Delta AMF=\Delta DMC\left(c-g-c\right)\)
=>FAM^=CDM^
Do 2 góc này = nhau và ở vị trí sole
\(=>AF//DC\)
C,theo câu A ta có : EAM^=BDM^
=>AE//BD
theo câu B ta có :
AF//DC
a: Xét ΔAME và ΔDMB có
MA=MD
\(\widehat{AME}=\widehat{DMB}\)
ME=MB
Do đó: ΔAME=ΔDMB
Xét tứ giác AEDB có
M là trung điểm của AD
M là trug điểm của EB
Do đó: AEDB là hình bình hành
Suy ra: AE//BC
b: Xét tứ giác AFDC có
M là trug điểm của AD
M là trung điểm của FC
Do đó: AFDC là hình bình hành
Suy ra: AF//BC
mà AE//BC
và AF,AE có điểm chug là A
nên E,A,F thẳng hàng
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath
Em xem bài ở link này nhé! Câu b
Bạn tự vẽ hình nhé !
a, Xét tam giác AEM và tam giác DBM , ta có:
Góc BMD= góc AME ( 2 góc đối đỉnh)
DM=MA(gt)
ME=MB(gt)
do đó tam giác AEm= tam giác DBM(c-g-c)
suy ra : AE=BD( 2 cạnh tưởng ứng)
b, Xét tam giác MDC= tam giác MAF , ta có
Góc AMF= góc DMC ( đối đỉnh)
MF=MC (gt)
MA=MD(gt)
do đó tam gaisc MDC= tam giác MAF (c-g-c)
suy ra : góc FAM = góc CMD (2 góc tưởng ứng) và ở vị trí 2 góc so le trong nên AF // BC
c, Ta có :góc MAE= góc MDB (tam giác ADE= tam giác DMB) và ở vị trí so le trong nên AE // BC
mà AF// BC (câu b)
Theo tiên đề Ơ-clit thì 2 đường thẳng AE và AF trùng nhau nên 3 điểm A,E,F thẳng hàng .
Chúc bạn học tốt !!!
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài bạn làm nhé!