K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 1 2020

Lời giải:

\((\sqrt{1993}+\sqrt{1995})^2=1993+1995+2.\sqrt{1993.1995}=3988+2\sqrt{(1994-1)(1994+1)}\)

\(=3988+2\sqrt{1994^2-1}< 3988+2\sqrt{1994^2}=3988+2.1994=7976\)

\(\Rightarrow \sqrt{1993}+\sqrt{1995}< \sqrt{7976}\) hay $\sqrt{1993}+\sqrt{1995}< 2\sqrt{1994}$

12 tháng 1 2020

Này Akai Haruma, mk vẫn ko hiểu bài này lắm, bn có thể giải lại 1 cách rõ ràng hơn cho mk hiểu đc ko, mk chép nhưng cũng cần phải hiểu bài nếu ko cô mk hỏi thì chết???leuleu

6 tháng 1 2016

de thi hoc ki cua tui day

6 tháng 1 2016

tui ko bít làm 

mới hok lớp 7 làm được chết liền

8 tháng 7 2016

\(\sqrt{\left(1-\sqrt{1993}\right)^2}.\sqrt{1994+2.1993}=\sqrt{\left(1-\sqrt{1993}\right)^2}.\sqrt{\left(\sqrt{1993}+1\right)^2}=\left(\sqrt{1993}-1\right)\left(\sqrt{1993}+1\right)=1993-1=1992\)

14 tháng 8 2020

ta có bđt \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\) với mọi \(a+b\ge0\) và \(n\inℝ\)

\(1+\sqrt[1995]{1995}=2\sqrt[1995]{\left(\frac{1+\sqrt[1995]{1995}}{2}\right)^{1995}}\le2\sqrt[1995]{\frac{1+1995}{2}}=2\sqrt[1995]{\frac{1996}{2}}\)

\(=\sqrt[1995]{2^{1994}.1996}=\sqrt[1995]{2.2...2.1996}< \sqrt[1995]{2.3...1995.1996}=\sqrt[1995]{1996!}\)

20 tháng 10 2016

Ta gán : \(1992\rightarrow D\)\(1992\rightarrow A\)

\(D=D+1:A=D.\sqrt[D]{A}\)

CALC , bấm liên tiếp dấu "=" cho đến khi D = 2013 thì dừng.

Sau đó bấm \(\frac{Ans}{D}\) sẽ ra kết quả cần tính.

11 tháng 7 2018

\(\left(1+\sqrt{1993}\right).\sqrt{1994-2\sqrt{1993}}\)

\(=\left(1+\sqrt{1993}\right).\sqrt{\left(\sqrt{1993}\right)^2-2.\sqrt{1993}+1}\)

\(=\left(1+\sqrt{1993}\right).\sqrt{\left(\sqrt{1993}-1\right)^2}\)

\(=\left(1+\sqrt{1993}\right).\left(\sqrt{1993}-1\right)\)

\(=1992\)

ai tích mình mình tích lại cho