các số tự nhiên n và 2n có tổng các chữ số bằng nhau chứng ming rằng n chia hết cho 9
IQ 1 mới ko giải dược
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
Vì n và 2n có tổng các chữ số = nhau nên n và 2n có cùng số dư khi chia cho 9
=> 2n -n chia hết cho 9
=> 1n chia hết cho 9
=> n chia hết cho 9 vì UCLN( 9, 1)= 1
=> đpcm
gọi tổng chữ số của số đó là k
\(\Rightarrow\)n-k chia hết cho 9 và 2n-k chia hết cho 9
\(\Rightarrow\)(2n-k)-(n-k) chia hết cho 9
\(\Rightarrow\)n chia hết cho 9
Vậy n chia hết cho 9
Giải:
a) Ta có: n và 3.n có tổng chữ số như nhau
Mà \(3.n⋮3\)
\(\Rightarrow3.n\) có tổng các chữ số ⋮ 3
\(\Rightarrow n\) có tổng các chữ số ⋮ 3 (Vì tổng chữ số của n = tổng các chữ số của 3.n)
\(\Rightarrow3.n\) ⋮ 9 (n có tổng các chữ số ⋮ 3)
\(\Rightarrow n\) có tổng các chữ số ⋮ 9
\(\Rightarrow n⋮9\)
vì n và 2n có tổng các chữ bằng nhau
=>2n và n có cùng số dư khi chia cho 9
=>2n-n chia hết cho 9
=>1n chia hết cho 9 hay n chia hết cho 9 (đpcm)
Bạn trợ làm đúng rồi đấy