K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2020

ĐK : \(x\ne1\)

Sử dụng chia 2 đa thức ta được

\(\frac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}=x^2-2x+1+\frac{3}{x^2-4}\)

Để phân thức có giá trị nguyên

\(\Leftrightarrow\frac{3}{x^2-4}\inℤ\)

\(\Leftrightarrow x^2-4\inƯ\left(3\right)\)

Ta có bảng sau :

x2 - 4 1-13-3
x\(\sqrt{5}\left(L\right)\)\(\sqrt{3}\left(L\right)\)\(\sqrt{7}\left(L\right)\)1 hoặc -1

Vậy ...............

20 tháng 12 2020

ĐKXĐ: \(x\ne1\)

Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)

\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)

\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)

\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)

\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)

Để B nguyên thì \(3⋮\left(x-1\right)^2\)

\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)

mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ

nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)

\(\Leftrightarrow x-1\in\left\{1;9\right\}\)

hay \(x\in\left\{2;10\right\}\) (nhận)

Vậy: \(x\in\left\{2;10\right\}\)

18 tháng 11 2017

MK ko biế đúng ko nữa , sai thì ý kiến

a)

Tìm số nguyên của x để mỗi phân thức sau có giá trị là số nguyên,(x^4 - 2x^3 - 3x^2 + 8x - 1) / (x^2 - 2x +1),(x^4 + 3x^3 +2x^2 + 6x -2) / (x^2 + 2),Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

b)

Tìm số nguyên của x để mỗi phân thức sau có giá trị là số nguyên,(x^4 - 2x^3 - 3x^2 + 8x - 1) / (x^2 - 2x +1),(x^4 + 3x^3 +2x^2 + 6x -2) / (x^2 + 2),Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Chúc các bn hok tốt

Tham khảo nhé

a: Để A là số nguyên thì

x^3-2x^2+4 chia hết cho x-2

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

b: Để B là số nguyên thì

\(3x^3-x^2-6x^2+2x+9x-3+2⋮3x-1\)

=>\(3x-1\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)

 

a:

ĐKXĐ: x<>-1/2

Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì

\(2x^3+x^2+2x+1+1⋮2x+1\)

=>\(2x+1\inƯ\left(1\right)\)

=>2x+1 thuộc {1;-1}

=>x thuộc {0;-1}

b:

ĐKXĐ: x<>1/3

 \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\in Z\)

=>3x^3-x^2-6x^2+2x+9x-3+2 chia hết cho 3x-1

=>2 chia hết cho 3x-1

=>3x-1 thuộc {1;-1;2;-2}

=>x thuộc {2/3;0;1;-1/3}

mà x nguyên

nên x thuộc {0;1}

c: 

ĐKXĐ: x<>2

\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\in Z\)

=>\(\left(x^2-4\right)\left(x^2+4\right)⋮\left(x-2\right)^2\left(x^2+4\right)\)

=>\(x+2⋮x-2\)

=>x-2+4 chia hết cho x-2

=>4 chia hết cho x-2

=>x-2 thuộc {1;-1;2;-2;4;-4}

=>x thuộc {3;1;4;0;6;-2}