p=(2x+2y-2019z)/(x+y-2020z)
- tinh p khi \(\frac{3}{x+y}\)=\(\frac{1}{y+z}\)=\(\frac{2}{z+x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3}{x+y}=\frac{2}{y+z}=\frac{1}{x+z}=\frac{3+2+1}{x+y+y+z+x+z}=\frac{6}{2\left(x+y+z\right)}=\frac{3}{x+y+z}\)
\(\Rightarrow x+y=x+y+z\) \(\Rightarrow z=0\)
\(\Rightarrow P=\frac{2x+2y+2019z}{x+y-2020z}=\frac{2\left(x+y\right)+2019\cdot0}{x+y-2020\cdot0}=\frac{2\left(x+y\right)}{x+y}=2\)
Vậy P = 2
Ta có:
\(\frac{3}{x+y}=\frac{2}{y+z}=\frac{1}{z+x}\Rightarrow\frac{x+y}{3}=\frac{y+z}{2}=\frac{z+x}{1}=\frac{x+y+y+z+z+x}{3+2+1}=\frac{2\left(x+y+z\right)}{6}=\frac{x+y+z}{3}\)
\(\frac{x+y+z}{3}=\frac{x+y}{3}\Rightarrow z=0\)
Thay vào P, ta có:
\(P=\frac{2x+2y+2019z}{x+y-2020z}=\frac{2x+2y}{x+y}=\frac{2\left(x+y\right)}{x+y}=2\)
Vậy P=2
a)\(\left|x-2y\right|=5\Rightarrow\left[\begin{matrix}x-2y=5\\x-2y=-5\end{matrix}\right.\)
Từ \(2x=3y=5z\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)\(\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)
Nếu x-2y=5
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{5}{-5}-1\)
\(\Rightarrow\left\{\begin{matrix}x=-15\\y=-10\\z=-6\end{matrix}\right.\)
Nếu x-2y=-5
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)
\(\Rightarrow\left\{\begin{matrix}x=15\\y=10\\z=6\end{matrix}\right.\)
Vậy có 2 bộ (x,y,z). Đó là (-15;-10;-6), (15;10;6)
b) Từ \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\)\(\Rightarrow\frac{x}{6}=\frac{y}{15}\left(1\right)\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\)\(\Rightarrow\frac{x}{6}=\frac{z}{4}\left(2\right)\)
Từ (1),(2)\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)
Đặt\(\)\(\frac{x}{6}=\frac{y}{15}=\frac{x}{4}=k\)
\(\Rightarrow\left\{\begin{matrix}x=6k\\y=15k\\z=4k\end{matrix}\right.\Rightarrow xy=90k^2\)
\(\Rightarrow90k^2=90\Rightarrow k^2=1\Rightarrow\left[\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
Với k=1\(\Rightarrow\)\(\left\{\begin{matrix}x=6\\y=15\\z=4\end{matrix}\right.\)
Với k=-1\(\Rightarrow\left\{\begin{matrix}x=-6\\y=-15\\z=-4\end{matrix}\right.\)