K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2019

Chuẩn hóa \(a+b+c=3\) rồi dùng hệ số bất định nha bạn.Mình nhác quá chỉ gợi ý thôi.Nếu cần thì trưa mai đi học về mình làm cho.

27 tháng 12 2019

Thấy có lời giải này hay hay nên mình copy lại nha (Trong sách Yếu tố ít nhất - Võ Quốc Bá Cẩn)

NV
12 tháng 6 2020

\(\Leftrightarrow\frac{\left(b+c\right)^2+a^2-2a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{\left(a+c\right)^2+b^2-2b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{\left(b+a\right)^2+c^2-2c\left(a+b\right)}{\left(a+b\right)^2+c^2}\ge\frac{3}{5}\)

\(\Leftrightarrow3-2\left(\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\right)\ge\frac{3}{5}\)

\(\Leftrightarrow\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\le\frac{6}{5}\)

Chuẩn hóa \(a+b+c=3\) (hay đặt \(x=\frac{3a}{a+b+c};y=\frac{3b}{a+b+c};z=\frac{3c}{a+b+c}\))

BĐT cần chứng minh trở thành:

\(\frac{a\left(3-a\right)}{\left(3-a\right)^2+a^2}+\frac{b\left(3-b\right)}{\left(3-b\right)^2+b^2}+\frac{c\left(3-c\right)}{\left(3-c\right)^2+c^2}\le\frac{6}{5}\)

Ta có đánh giá: \(\frac{a\left(3-a\right)}{\left(3-a\right)^2+a^2}\le\frac{9a+1}{25}\) ; \(\forall a\in\left(0;3\right)\)

\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\) (luôn đúng)

Tương tự: \(\frac{b\left(3-b\right)}{\left(3-b\right)^2+b^2}\le\frac{9b+1}{25};\frac{c\left(3-c\right)}{\left(3-c\right)^2+c^2}\le\frac{9c+1}{25}\)

Cộng vế với vế: \(VT\le\frac{9\left(a+b+c\right)+3}{25}=\frac{30}{25}=\frac{6}{5}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

10 tháng 8 2020

Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\)thì ta có \(xy+yz+zx+xyz=4\)

Bất đẳng thức cần chứng minh trở thành: \(x^2+y^2+z^2+5xyz\ge4\)

Đặt \(x+y+z=p;xy+yz+zx=q;xyz=r\)thì \(q+r=4\)và ta cần chứng minh \(p^2-2q+5r\ge8\)

\(\Leftrightarrow p^2-2q+5\left(r-4\right)+12\ge0\Leftrightarrow p^2-7q+12\ge0\)

*) Nếu \(4\ge p\)thì theo Schur, ta có: \(r\ge\frac{p\left(4q-p^2\right)}{9}\Leftrightarrow4\ge q+\frac{p\left(4q-p^2\right)}{9}\)

\(\Leftrightarrow q\le\frac{p^3+36}{4p+9}\)

Nên ta cần chỉ ra rằng \(p^2-\frac{7\left(p^3+6\right)}{4p+9}+12\ge0\Leftrightarrow\left(p-3\right)\left(p^2-6\right)\le0\)*đúng vì \(4\ge p\ge\sqrt{3q}\ge3\)*

*) Nếu \(p\ge4\)thì \(p^2\ge16\ge4q\Rightarrow p^2-2q+5r\ge p^2-2q\ge\frac{p^2}{2}\ge8\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = 1 hoặc \(\left(x,y,z\right)=\left(2,2,0\right)\)và các hoán vị

11 tháng 8 2020

Tuyệt quá,

Bất đẳng thức \(\frac{a^2}{\left(b+c\right)^2}+\frac{b^2}{\left(c+a\right)^2}+\frac{c^2}{\left(a+b\right)^2}+\frac{kabc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}+\frac{1}{8}k\)

có hằng số k tốt nhất là 10.

Tức là bài toán này đúng với mọi \(k\le10\)!

14 tháng 4 2020

Kiểm tra lại đề nhé! 

Em thử cho a = b = c xem sao?

14 tháng 4 2020

sửa số 2 thành số 8 nha

16 tháng 1 2020

\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\frac{\sqrt{a}}{b+c}\right)^2+\left(\frac{\sqrt{b}}{c+a}\right)^2+\left(\frac{\sqrt{c}}{a+b}\right)^2\right]\)

Áp dúng bất đẳng thức Bunhiacopxki ta có : 

\(VT\ge\left(\sqrt{a}.\frac{\sqrt{a}}{b+c}+\sqrt{b}.\frac{\sqrt{b}}{c+a}+\sqrt{c}.\frac{\sqrt{c}}{a+b}\right)^2\)

\(\Leftrightarrow VT\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)

Xét \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Áp dụng bất đẳng thức Cauchy dạng phân thức ta có :

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\)

\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(\Rightarrow VT\ge\frac{9}{4}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c\)

Chúc bạn học tốt !!!