Cho \(\Delta\)ABC có AB < AC, lấy D thuộc AC sao cho AB=AD. Vẽ AE là tia phân giác của góc BAC (E thuộc BC) chứng minh:
a) \(\Delta\)ABE=\(\Delta\)ADE
b) AE là trung trực của BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Xét tam giác $ABD$ và $AED$ có:
$AB=AE$ (gt)
$\widehat{BAD}=\widehat{EAD}$ (tính chất tia phân giác)
$AD$ chung
$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra $BD=ED$ và $\widehat{ABD}=\widehat{AED}$
$\Rightarrow 180^0-\widehat{ABD}=180^0-\widehat{AED}$
$\Rightarrow \widehat{DBM}=\widehat{DEC}$
Xét tam giác $DBM$ và $DEC$ có:
$\widehat{BDM}=\widehat{EDC}$ (đối đỉnh)
$BD=ED$ (cmt)
$\widehat{DBM}=\widehat{DEC}$ (cmt)
$\Rightarrow \triangle DBM=\triangle DEC$ (g.c.g)
có AB=AC suy ra tam giác ABC cân
mà AE là phân giác góc BAC suy ra AE là đg cao (tính chất)và cũng suy ra b)AE là đg trung trực của BC
xét 2 tam giác vuông ABE và ACE co\(\hept{\begin{cases}AB=AC\\AElàcanhchung\end{cases}}\)
suy ra 2 tam giác bằng nhau
a: XétΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó; ΔACE=ΔAKE
Suy ra: AC=AK
b: Ta có: ΔACE=ΔAKE
nên EC=EK
mà AC=AK
nên AE là đường trung trực của CK
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
Câu 1 :
a) Xét \(\Delta ABC\) có :
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân)
Xét \(\Delta ABE;\Delta ACE\) có :
\(\widehat{BAE}=\widehat{CAE}\) (AE là tia phân giác của \(\widehat{BAC}\) )
\(AB=AC\left(cmt\right)\)
\(\widehat{ABE}=\widehat{ACE}\) (do \(\widehat{ABC}=\widehat{ACB}\)- cmt)
=> \(\Delta ABE=\Delta ACE\left(g.c.g\right)\)
b) Ta có : \(BE=EC\) (từ \(\Delta ABE=\Delta ACE\left(cmt\right)\))
=> AE là trung tuyến trong tam giác ABC
Xét \(\Delta ABC\) cân tại A (gt) có :
\(AE\) là tia phân giác của \(\widehat{BAC}\left(gt\right)\) đồng thời là trung tuyến (cmt)
Nên : AE là đường trung trục trong tam giác cân ABC (tính chất tam giác cân)
Suy ra : \(\left\{{}\begin{matrix}BE=EC\\AE\perp BC\end{matrix}\right.\)
Do đó : AE là trung trực của BC (đpcm)
Lời giải:
a. Xét tam giác ABDABD và AEDAED có:
AB=AEAB=AE (gt)
ˆBAD=ˆEADBAD^=EAD^ (tính chất tia phân giác)
ADAD chung
⇒△ABD=△AED⇒△ABD=△AED (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra BD=EDBD=ED và ˆABD=ˆAEDABD^=AED^
⇒1800−ˆABD=1800−ˆAED⇒1800−ABD^=1800−AED^
⇒ˆDBM=ˆDEC⇒DBM^=DEC^
Xét tam giác DBMDBM và DECDEC có:
ˆBDM=ˆEDCBDM^=EDC^ (đối đỉnh)
BD=EDBD=ED (cmt)
ˆDBM=ˆDECDBM^=DEC^ (cmt)
⇒△DBM=△DEC⇒△DBM=△DEC (g.c.g)
a) Xét ΔABE và ΔADE có:
AE: chung
BAE=DAE(AE: pg BAC)
AB=AD(gt)
=>ΔABE=ΔADE(c.g.c)
=>đpcm
b) Từ cm(a)
=>EB=ED(2 cạnh tương ứng) (*)
=>AEB=AED
Mà AEB+AED=180o
=>2AEB=180o
=>AEB=90o
=>AE\(\perp\) BD (**)
Từ (*) và (**)
=>AE là trung trực BD(đpcm)