K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

a: Xét ΔOBA và ΔOCA có 

OB=OC

OA chung

BA=CA

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}\)

\(\Leftrightarrow\widehat{OCA}=90^0\)

hay AC\(\perp\)OC tại C

Xét (O) có

OC là bán kính

AC\(\perp\)OC tại C

Do đó: AC là tiếp tuyến của (O)

b: Ta có: OB=OC

nên O nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2)suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC(3)

Xét (O) có

ΔBCE nội tiếp đường tròn

BE là đường kính

Do đó: ΔBCE vuông tại C

hay BC\(\perp\)CE(4)

Từ (3) và (4) suy ra CE//OA

3 tháng 9 2021

cậu làm hộ tớ câu b,c được không

25 tháng 12 2023

a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

mà OB=OD(=R)

nên \(OH\cdot OA=OD^2\)

=>\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

Xét ΔOHD và ΔODA có

\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

\(\widehat{HOD}\) chung

Do đó: ΔOHD đồng dạng với ΔODA

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp đường tròn đường kính OA

=>A,B,O,C cùng thuộc (I), I là trung điểm của OA

b: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔABC đều

c: Ta có: ΔBOA vuông tại B

=>\(\widehat{BOA}+\widehat{BAO}=90^0\)

=>\(\widehat{BOA}=90^0-30^0=60^0\)

Xét ΔBIO có IO=IB

nên ΔIBO cân tại I

Xét ΔIBO cân tại I có \(\widehat{IOB}=60^0\)

nên ΔIBO đều

=>BI=OI=R

=>\(I\in\left(O\right)\)

Ta có: BI=R

mà BI=CI

nên CI=R

=>OB=BI=CI=OC

=>OBIC là hình thoi

=>BI//OC

a: Xét tứ giác ABOC có

góc OBA+góc OCA=180 độ

nên OBAC là tứ giác nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC

 

22 tháng 12 2021

\(a,\) Vì AB,AC là tiếp tuyến của (O) nên \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)

Vậy ABOC nội tiếp hay A,B,C,O cùng thuộc 1 đường tròn

\(b,\) Vì \(AB=AC\) nên \(A\in\) trung trực BC

Vì \(OB=OC\) nên \(O\in\) trung trực BC

Do đó OA là trung trực BC hay \(OA\bot BC\)

\(c,\) Áp dụng hệ thức lượng \(\Delta AOB\) có đường cao BI ta được: \(AB^2=BI.OA(đpcm)\)

26 tháng 11 2023

a: Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên OBAC là tứ giác nội tiếp

=>O,B,A,C cùng thuộc một đường tròn

Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC (3)

b: Xét (O) có

ΔBCD nội tiếp

CD là đường kính

Do đó: ΔDBC vuông tại B

=>DB\(\perp\)BC(4)

Từ (3) và (4) suy ra DB//OA

c: Đề sai rồi bạn

26 tháng 11 2023

À quên OB = 2cm, OA = 4cm nhé, tớ chưa sửa 

1: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD

mà BC\(\perp\)OA

nên CD//OA

2: Ta có: OA là đường trung trực của BC

OA cắt BC tại E

Do đó: E là trung điểm của BC và OA\(\perp\)BC tại E

Xét ΔOBA vuông tại B có BE là đường cao

nên \(OE\cdot OA=OB^2\)

=>\(OE\cdot OA=OD^2\)

=>\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)

Xét ΔOED và ΔODA có

\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)

\(\widehat{EOD}\) chung

Do đó: ΔOED~ΔODA

=>\(\widehat{ODE}=\widehat{OAD}\)

 

21 tháng 1

mik c.ơn