CHỨNG MINH RẰNG A=244999...91000...09 LÀ SỐ CHÍNH PHƯƠNG.
(n-2 số 9)(n số 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9
=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9
=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9
=(10n.15−3)2=(10n.15−3)2
Vậy A là Số Chính Phương (đpcm)
Công bố:
Ta cần chứng minh số có dạng \(224999...91000...09\)(n-2 cs 9 nằm giữa 4 và 1; n chữ số 0) đều là các số chính phương.
Thật vậy, ta có \(224999...91000...09=224999...91000...000+9=224999...90000...000+10^{n+1}+9\)
n-2 cs 9 n cs 0 n-2 cs 9 n+1 cs 0 n-2 cs 9 n+2 cs 0
\(=224999...9.10^{n+2}+10^{n+1}+9=\left(224000...00+999...9\right).10^{n+2}+10^{n+1}+9\)
n-2 cs 9 n-2 cs 0 n-2 cs 9
\(=\left(224.10^{n-2}+10^{n-2}-1\right).10^{n+2}+10^{n+1}+9=224.10^{2n}+10^{2n}-10^{n+2}+10^{n+1}+9\)\(=225.10^{2n}-100.10^n+10.10^n+9=\left(15.10^n\right)^2-90.10^n+9\)\(=\left(15.10^n\right)^2-2.15.10^n.3+3^2=\left(15.10^n-3\right)^2\)là số chính phương.
Vậy \(224999...91000...09\)(n-2 cs 9 nằm giữa 4 và 1; n chữ số 0) là số chính phương.
\(\Rightarrowđpcm\)
22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9
=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9
=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9
=(10n.15−3)2=(10n.15−3)2
Vậy A là Số Chính Phương (đpcm)