K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)

2 tháng 8 2020

22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)

26 tháng 8 2021

 A = 99...9800...01    ( n thuộc N sao )

= 99...9 . \(10^{n+2}\)+ 8.\(10^{n+1}\)+1

= (\(10^{n-1}\) - 1).\(10^{n+2}\)+ 8.\(10^{n+1}\) + 1

= \(10^{2n+2}\)+ - 10.\(10^{n+1}\)+ 8.\(10^{n+1}\)+ 1

\(10^{2n+2}\) - 2.\(10^{n+1}\)+ 1

= (\(10^{n+1}\) - 1)²

Hok tốt~

2 tháng 8 2020

22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)

k anh nhé

cho N =a^2+b^2 

=> 2N=(a^2+b^2)2=(a-b)^2+(a+b)^2

N^2=(a^2+B^2)^2=(a^2-b^2)^2(2ab)^2