K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

Cô si lên:

\(S\ge8\sqrt[8]{\frac{abcd\left(b+c+d\right)\left(a+c+d\right)\left(a+b+d\right)\left(a+b+c\right)}{abcd\left(b+c+d\right)\left(a+c+d\right)\left(a+b+d\right)\left(a+b+c\right)}}=8\)

16 tháng 12 2019

๖²⁴ʱČøøℓ ɮøү 2к⁷༉ Liệu điểm rơi có xảy ra ???

Dùng \(\Sigma_{cyc}\) với \(\Pi_{cyc}\) cho nó lẹ nha,chớ mik nhác lắm:((

\(S=\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{a}\right)\)

\(=\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{9a}\right)+\Sigma_{cyc}\frac{8}{9}\cdot\frac{b+c+d}{a}\)

\(\ge8\sqrt[8]{\Pi_{cyc}\frac{a}{b+c+d}\cdot\Pi_{cyc}\frac{b+c+d}{9a}}+\frac{8}{9}\left(\frac{b}{a}+\frac{c}{a}+\frac{d}{a}+\frac{a}{b}+\frac{c}{b}+\frac{d}{b}+\frac{a}{c}+\frac{b}{c}+\frac{d}{c}+\frac{a}{d}+\frac{b}{d}+\frac{c}{d}\right)\)

\(\ge\frac{8}{3}+\frac{8}{9}\cdot12\left(use:\frac{x}{y}+\frac{y}{x}\ge2\right)\)

\(=\frac{40}{3}\)

Dấu "=" xảy ra tại a=b=c=d.

P/S:Viết tắt rồi mà vẫn dài:( Thử hỏi xem nếu ko viết thì sao ??

23 tháng 11 2016

Ta có

\(4\left(a+b+c+d\right)^2=\left(\left(a+b\right)+\left(b+c\right)+\left(c+d\right)+\left(d+a\right)\right)^2\)

\(=\left(\frac{\sqrt{a+b}}{\sqrt{b+c+d}}.\sqrt{a+b}.\sqrt{b+c+d}+\frac{\sqrt{b+c}}{\sqrt{c+d+a}}.\sqrt{b+c}.\sqrt{c+d+a}+\frac{\sqrt{c+d}}{\sqrt{d+a+b}}.\sqrt{c+d}.\sqrt{d+a+b}+\frac{\sqrt{d+a}}{\sqrt{a+b+c}}.\sqrt{d+a}.\sqrt{a+b+c}\right)^2\)

\(\le\left(\frac{a+b}{b+c+d}+\frac{b+c}{c+d+a}+\frac{c+d}{d+a+b}+\frac{d+a}{a+b+c}\right)\left(\left(a+b\right)\left(b+c+d\right)+\left(b+c\right)\left(c+d+a\right)+\left(c+d\right)\left(d+a+b\right)+\left(d+a\right)\left(a+b+c\right)\right)\)

\(\Rightarrow VT\ge\frac{4\left(a+b+c+d\right)^2}{\left(\left(a+b\right)\left(b+c+d\right)+\left(b+c\right)\left(c+d+a\right)+\left(c+d\right)\left(d+a+b\right)+\left(d+a\right)\left(a+b+c\right)\right)}\)(1)

Ta chứng minh

\(4\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(\left(a+b\right)\left(b+c+d\right)+\left(b+c\right)\left(c+d+a\right)+\left(c+d\right)\left(d+a+b\right)+\left(d+a\right)\left(a+b+c\right)\right)\left(2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2-2ac-2bd\ge0\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(đúng)

Từ (1) và (2) ta

\(\Rightarrow\frac{a+b}{b+c+d}+\frac{b+c}{c+d+a}+\frac{c+d}{d+a+b}+\frac{d+a}{a+b+c}\ge\frac{8}{3}\)

Dấu = xảy ra khi a = b = c = d

23 tháng 11 2016

dau = xay ra khi a=b=c=d

8 tháng 4 2015

\(VT=\frac{a+b-\left(b+d\right)}{d+b}+\frac{\left(d+c\right)-\left(b+c\right)}{b+c}+\frac{\left(b+a\right)-\left(a+c\right)}{c+a}+\frac{\left(c+d\right)-\left(a+d\right)}{a+d}\)

\(VT=\frac{a+b}{d+b}-1+\frac{\left(d+c\right)}{b+c}-1+\frac{\left(b+a\right)}{c+a}-1+\frac{\left(c+d\right)}{a+d}-1\)

\(VT=\left(a+b\right).\left(\frac{1}{d+b}+\frac{1}{a+c}\right)+\left(d+c\right).\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

Chứng minh đc bđt sau: Với x; y > 0 ta có  \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Áp dụng ta có: \(VT\ge\left(a+b\right).\frac{4}{d+b+a+c}+\left(d+c\right).\frac{4}{b+c+a+d}-4\ge\frac{4.\left(a+b+c+d\right)}{a+b+c+d}-4=0\)

=> ĐPCM

 

19 tháng 2 2018

Cộng 4 vào vế trái nhá

\(VT+4=\left(\dfrac{a-d}{d+b}+1\right)+\left(\dfrac{d-b}{b+c}+1\right)+\left(\dfrac{b-c}{c+a}+1\right)+\left(\dfrac{c-a}{a+d}+1\right)\)

\(=\dfrac{a+b}{d+b}+\dfrac{d+c}{b+c}+\dfrac{a+b}{c+a}+\dfrac{c+d}{a+d}\)

\(=\left(a+b\right)\left(\dfrac{1}{d+b}+\dfrac{1}{c+a}\right)+\left(c+d\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+d}\right)\)

\(\ge\left(a+b\right).\dfrac{4}{a+b+c+d}+\left(c+d\right).\dfrac{4}{a+b+c+d}\)

\(=\left(a+b+c+d\right).\dfrac{4}{a+b+c+d}\)\(=4\)

\(\Rightarrow VT\ge0=VP\)(Đpcm)

15 tháng 11 2016

tách ra rồi cosi sw

15 tháng 8 2018

bạn ơi bạn làm dc chưa

5 tháng 3 2019

\(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{a+d}\ge\frac{a-d}{a+b}\)

\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{a+d}-\frac{a-d}{a+b}\ge0\)

\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{a+d}+\frac{d-a}{a+b}\ge0\)

\(\Leftrightarrow\left(\frac{a-b}{b+c}+1\right)+\left(\frac{b-c}{c+d}+1\right)+\left(\frac{c-d}{a+d}+1\right)+\left(\frac{d-a}{a+b}+1\right)\ge4\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{a+d}+\frac{d+b}{a+b}\ge4\)

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(1)

Áp dụng BĐT AM-GM ta có:

\(\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{a+d}+\frac{d+b}{a+b}\ge\)\(\left(a+c\right)\frac{2}{\sqrt{\left(b+c\right)\left(a+d\right)}}+\left(b+d\right)\frac{2}{\sqrt{\left(c+d\right)\left(a+b\right)}}\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4 \left(2\right)\)Từ (1) và (2) \(\Rightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{a+d}\ge\frac{a-d}{a+b}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{b+c}=\frac{1}{a+d}\\\frac{1}{c+d}=\frac{1}{a+b}\end{cases}}\Leftrightarrow\hept{\begin{cases}b+c=a+d\\c+d=a+b\end{cases}}\Leftrightarrow a=b=c=d\)

8 tháng 3 2019

vì sao                                          

 (a+c)(2/căn bậc 2 của(b+c)(a+d))+(b+d)(2/căn bậc 2 của (c+d)(a+b))
>=(4(a+c)/a+b+c+d) +4(b+d)/a+b+c+d

(căn bậc 2 máy mink ko viết đc)

29 tháng 12 2017

Áp dụng BĐT Bunhiacopxki , ta có: 

Với a,b,c,d >0

\(\left(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\right)\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right]\ge\left(a+b+c+d\right)^2\)

\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\right)\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+cd+da+2ca+2bd}\)

Ta cần chứng minh : 

\(\left(a+b+c+d\right)^2\ge2\left(ab+bc+cd+da+2ac+2bd\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\ge2ca+2bd\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(đúng) 

\(\Leftrightarrow dpcm\)