K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2023

Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)

\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)

Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)

Do đó:

a.

Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm

TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)

TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)

Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)

b.

Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)

\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)

c.

Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)

d.

Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)

NV
21 tháng 4 2023

À ừ đúng rồi em quên mất TH (1) có nghiệm kép dương nữa

20 tháng 6 2019

Chọn A

4 tháng 10 2021

\(sinx=m^2-5m+1\Leftrightarrow sinx=\left(m-1\right)^2\)  (1)

Pt có nghiệm: \(\Rightarrow-1\le sinx\le1\)

                       \(\Rightarrow\) \(0\le\left(m-1\right)^2\le1\)

                       \(\Rightarrow\)\(0\le m-1\le1\Rightarrow-1\le m\le0\) 

Với \(m\in\left[-1;0\right]\) thì (1) có nghiệm.

Để pt (1) không có nghiệm \(\Rightarrow m\in\left(-\infty;-1\right)\cup\left(0;+\infty\right)\)

a Khi m=1 thì (1) sẽ là x^2+1=0

=>x thuộc rỗng

b: Thay x=1 vào (1),ta được:

1^2-2(m-1)+m^2=0

=>m^2+1-2m+2=0

=>m^2-2m+3=0

=>PTVN

c: Thay x=-3 vào pt, ta được:

(-3)^2-2*(m-1)*(-3)+m^2=0

=>m^2+9+6(m-1)=0

=>m^2+6m+3=0

=>\(m=-3\pm\sqrt{6}\)

22 tháng 1 2024

a) ∆' = [-(m - 3)]² - (m² + 3)

= m² - 6m + 9 - m² - 3

= -6m + 6

Để phương trình đã cho có 2 nghiệm thì ∆' ≥ 0

⇔ -6m + 6 ≥ 0

⇔ 6m ≤ 6

⇔ m ≤ 1

Vậy m ≤ 1 thì phương trình đã cho luôn có 2 nghiệm

b) Theo định lý Viét, ta có:

x₁ + x₂ = 2(m - 3) = 2m - 6

x₁x₂ = m² + 3

Ta có:

(x₁ - x₂)² - 5x₁x₂ = 4

⇔ x₁² - 2x₁x₂ + x₂² - 5x₁x₂ = 4

⇔ x₁² + 2x₁x₂ + x₂² - 2x₁x₂ - 2x₁x₂ - 5x₁x₂ = 4

⇔ (x₁ + x₂)² - 9x₁x₂ = 4

⇔ (2m - 6)² - 9(m² + 3) = 4

⇔ 4m² - 24m + 36 - 9m² - 27 = 4

⇔ -5m² - 24m + 9 = 4

⇔ 5m² + 24m - 5 = 0

⇔ 5m² + 25m - m - 5 = 0

⇔ (5m² + 25m) - (m + 5) = 0

⇔ 5m(m + 5) - (m + 5) = 0

⇔ (m + 5)(5m - 1) = 0

⇔ m + 5 = 0 hoặc 5m - 1 = 0

*) m + 5 = 0

⇔ m = -5 (nhận)

*) 5m - 1 = 0

⇔ m = 1/5 (nhận)

Vậy m = -5; m = 1/5 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu

a: \(\Delta=\left[-2\left(m-3\right)\right]^2-4\cdot1\cdot\left(m^2+3\right)\)

\(=\left(2m-6\right)^2-4\left(m^2+3\right)\)

\(=4m^2-24m+36-4m^2-12=-24m+24\)

Để phương trình có hai nghiệm thì \(\Delta>=0\)

=>-24m+24>=0

=>-24m>=-24

=>m<=1

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m-3\right)\right]}{1}=2\left(m-3\right)\\x_1\cdot x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2-5x_1x_2=4\)

=>\(\left(x_1+x_2\right)^2-4x_1x_2-5x_2x_1=4\)

=>\(\left(x_1+x_2\right)^2-9x_1x_2=4\)

=>\(\left(2m-6\right)^2-9\left(m^2+3\right)=4\)

=>\(4m^2-24m+36-9m^2-27-4=0\)

=>\(-5m^2-24m+5=0\)

=>\(-5m^2-25m+m+5=0\)

=>\(-5m\left(m+5\right)+\left(m+5\right)=0\)

=>(m+5)(-5m+1)=0

=>\(\left[{}\begin{matrix}m+5=0\\-5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\left(nhận\right)\\m=\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)

7 tháng 6 2021

PT có 2 nghiệm phân biệt

`<=>(4m+3)^2-8(2m^2-1)>0`

`<=>16m^2+24m+9-16m^2+8>0`

`<=>24m+17>0`

`<=>24m> -17`

`<=>m>(-17)/24`

PT có 1 nghiệm =1 thì ta thay x=1 thì pt =

`=>2.1-(4m+3).1+2m^2-1=0`

`<=>2m^2-1-(4m+3)+2=0`

`<=>2m^2+1-4m-3=0`

`<=>2m^2-4m-2=0`

`<=>m^2-2m-1=0`

`a=1,b=-2,c=-1`

`Delta'=1+1=2`

`=>x_1=1+sqrt2(tm),1-sqrt2(tm)`

Vậy `m=1+-sqrt2` thì PT có 2 nghiệm phân biệt có 1 nghiệm = 1

7 tháng 6 2021

PT có 1 nghiệm là `1 <=> 2-(4m+3)+2m^2-1=0`

`<=> 2m^2-4m-2=0`

`<=>m=1 \pm \sqrt2`.