K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCMI vuông tại M và ΔCAB vuông tại A có

góc C chung

=>ΔCMI đồng dạng với ΔCAB

b: BC=căn 5^2+12^2=13cm

CM=13/2=6,5cm

ΔCMI đồng dạng với ΔCAB

=>MI/AB=CM/CA

=>MI/5=6,5/12=13/24

=>MI=65/24(cm)

20 tháng 12 2020

a) Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)

\(\widehat{AEM}=90^0\)(ME⊥AB)

\(\widehat{AFM}=90^0\)(MF⊥AC)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

\(\Leftrightarrow BC=\sqrt{169}=13cm\)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{13}{2}=6.5cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)

mà AM=6,5cm

nên EF=6,5cm

Vậy: EF=6,5cm

c) Xét ΔABC có

M là trung điểm của BC(gt)

ME//AC(ME//AF, C∈AF)

Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)

Xét ΔABC có 

M là trung điểm của BC(gt)

MF//AB(MF//AE, B∈AE)

Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)

a: Xet ΔBME vuông tại M và ΔBAC vuông tại A có

góc B chung

=>ΔBME đồng dạng với ΔBAC

b: Xét ΔMBE vuông tại M và ΔMNC vuông tại M có

góc MBE=góc MNC

=>ΔMBE đồng dạng với ΔMNC

=>MB/MN=ME/MC

=>MN*ME=MB*MC=1/4BC^2

=>BC^2=4*MN*ME

14 tháng 4 2023

a) xét △ABC và △MBE có : 

Góc BAC  = Góc BME  = 90 (Gt)

Góc B chung

⇒△ABC ∼ △MBE (g.g) (1)

b)Xét △ABC và △MCN có:

Góc BAC  = góc NMC = 90 (Gt)

⇒△ABC ∼ △MBE (g.g) (2)

Ta có M là tđ của BC ⇒ MB =MC =1/2 BC

Từ (1) và (2) ⇒△MNC ∼ △MBE

⇒EM/MC = MN/BM

⇔ EM/MN = 1/2BC : 1/2BC

⇔BC2 =EM/MN : 4

⇔BC2 = EM/4MN

 

14 tháng 3 2021

undefined

undefined

undefined

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

DO đó: ΔABH=ΔACH

b: BH=CH=BC/2=3cm

=>AH=4(cm)

c: Xét ΔABC có

H là trung điểm của BC

HM//AC

Do đó: M là trung điểm của AB

12 tháng 3 2022

undefined

undefined

19 tháng 5 2022

a,

Ta có :

Δ ABC vuông tại A

Mà AI là đường trung tuyến của BC

=> AI = BI = IC

Xét Δ AIB, có :

AI = BI (cmt)

=> Δ AIB cân tại A

Xét Δ AIC, có :

AI = AC (cmt)

=> Δ AIC cân tại I

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

b: BH=CH=6cm

=>AH=8cm

c: Xét ΔAHE có 

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAHE cân tại A

hay AE=AH

d: Xét ΔADH có

AI là đường cao

AI là đườngtrung tuyến

Do đó:ΔADH cân tại A

=>AD=AH=AE

=>ΔADE cân tại A