Thực hiện phép tính
a, 3^10.11+ 3^10.5:(3^9.2^4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3^{10}.11+3^{10}.10}{3^9.2^4}\)
\(=\frac{3^{10}.\left(11+10\right)}{3^9.2^4}=\frac{3^{10}.21}{3^9.16}\)
\(=\frac{3.21}{16}=\frac{63}{16}\)
\(C=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}.\left(11+5\right)}{3^9.2^4}=\frac{3^{10}.16}{3^9.16}=\frac{3^{10}}{3^9}=3\)
1. \(\frac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\frac{3^{10}\left(11+5\right)}{3^9\cdot2^4}=\frac{3^{10}\cdot2^4}{3^9\cdot2^4}=3\)
2. \(\frac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}=\frac{2^{10}\cdot\left(13+65\right)}{2^8\cdot104}=\frac{2^{10}\cdot78}{2^8\cdot104}=\frac{2^8\cdot2^2\cdot2\cdot3\cdot13}{2^8\cdot2^3\cdot13}=\frac{2^8\cdot2^3\cdot3\cdot13}{2^8\cdot2^3\cdot13}=3\)
3. \(\frac{72^2\cdot54^2}{108^4}=\frac{\left(2^3\cdot3^2\right)^2\cdot\left(2\cdot3^3\right)^2}{\left(2^2\cdot3^3\right)^4}\)
\(=\frac{2^6\cdot3^4\cdot2^2\cdot3^6}{2^8\cdot3^{12}}=\frac{2^8\cdot3^{10}}{2^8\cdot3^{12}}=\frac{3^{10}}{3^{12}}=3^{-2}=\frac{1}{9}\)
4. \(\frac{21^2\cdot14\cdot125}{35^5\cdot6}=\frac{\left(3\cdot7\right)^2\cdot2\cdot7\cdot5^3}{\left(5\cdot7\right)^5\cdot2\cdot3}=\frac{3^2\cdot7^2\cdot2\cdot7\cdot5^3}{5^5\cdot7^5\cdot2\cdot3}=\frac{3^2\cdot7^3\cdot2\cdot5^3}{5^3\cdot5^2\cdot7^2\cdot7^3\cdot2\cdot3}=\frac{3^2}{5^2\cdot3\cdot7^2}=\frac{3}{1225}\)
\(a,4^{10}\cdot8^{15}=2^{20}\cdot2^{45}=2^{65}\)
\(b,4^{15}\cdot5^{30}=4^{15}\cdot5^{15}\cdot5^{15}=\left(4\cdot5\cdot5\right)^{15}=100^{15}\)
\(c,27^{16}\cdot9^{10}=3^{48}\cdot3^{20}=3^{68}\)
a) \(4^{10}.8^{15}=\left(2^2\right)^{10}.\left(2^3\right)^{15}=2^{20}.2^{45}=2^{20+45}=2^{65}\)
b) \(4^{15}.5^{30}=\left(2^2\right)^{15}.5^{30}=2^{30}.5^{30}=\left(2.5\right)^{30}=10^{30}\)
c) \(27^{16}.9^{10}=\left(3^3\right)^{16}.\left(3^2\right)^{10}=3^{48}.3^{20}=3^{48+20}=3^{68}\)
\(A=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}.16}{3^9.16}=3\)
\(B=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}.78}{2^8.104}=\frac{2^{10}.26.3}{2^8.2^2.26}=3\)
\(C=\frac{72^3.52^4}{108^4}=\frac{\left(3^2.2^3\right)^3.\left(13.2^2\right)^4}{\left(3^3.2^2\right)^4}=\frac{3^6.2^9.13^4.2^8}{3^{12}.2^8}=\frac{2^9.13^4}{3^6}\)
\(D=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{29}-\left(3^2\right)^{15}}{2^2.3^{28}}=\frac{11.3^{29}-3^{30}}{2^2.3^{28}}=\frac{3^{29}\left(33-1\right)}{2^2.3^{28}}=\frac{3^{29}.2^5}{2^2.3^{28}}=3.8=24\)
3^10.11 + 3^10.5 : ( 3^9.2^4)
=3^10.(11+5) : (3^9.2^4)
=(3^10.16) : (3^9.16)
=3^10 : 3^9
=3
Có gì sai thì góp ý cho mình nhé, Tks ! :)))