Chứng minh rằng số 19.8n+17 là hợp số với mọi số tự nhiên n.
Giúp mk vs!10SP cho câu tl đúng>3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn phân tích nhu mình vừa nãy thì sẽ có \(a=\frac{10^{2n}-1}{9}\) \(b=\frac{10^{n+1}-1}{9},c=\frac{6\left(10^n-1\right)}{9}\)
cộng tất cả vào ta sẽ có a+b+c+8 ( 8 =72/9) và bằng
\(\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)
phân tích 10^2n = (10^n)^2
10^(n+1) = 10^n.10 và 6(10^n-1) thành 6.10^n-6 và cộng 72-1-1=70, ta được
\(\frac{\left(10^n\right)^2+10^n.10+6.10^n-6+70}{9}\)
=\(\frac{\left(10^n\right)^2+10^n.16+64}{9}\)
=\(\frac{\left(10^n+8\right)^2}{3^2}\)
=\(\left(\frac{10^n+8}{3}\right)^2\)
vì 10^n +8 có dạng 10000..08 nên chia hết cho 3 => a+b+c+8 là số chính phương
Với a bất kì thì ta chọn b sao cho b=a-4
Khi đó: ab+4=a(a-4)+4
=a2-4a+4
=a2-2.2.a+22
=(a-2)2
Vậy với a E N ta luôn tìm được b sao cho ab+4 là số chính phương
Đặt \(ab+4=n^2\).
\(\Rightarrow ab=n^2-4=\left(n-2\right)\left(n+2\right)\).
Nếu \(a=n-2\)thì \(b=n+2=n-2+4=a+4\).
Vậy ta chỉ cần lấy \(b=a+4\)thì \(ab+4\)luôn là số chính phương.
Bạn có thể kiểm tra lại đề o , sai đề rồi
mình tìm thấy 1 số giá trị như x=0,x=13 là snt nha bạn