K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2020

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=\frac{1}{1}-\frac{1}{6}\)

\(=\frac{5}{6}\)

13 tháng 7 2021

\(\frac{1}{1.2}\)\(+\)\(\frac{1}{2.3}\)\(+\)\(\frac{1}{3.4}\)\(+\)\(\frac{1}{4.5}\)\(+\)\(\frac{1}{5.6}\)

\(=\)\(\frac{1}{1}\)\(-\)\(\frac{1}{2}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{3}\)\(+\)\(\frac{1}{3}\)\(-\)\(\frac{1}{4}\)\(+\)\(\frac{1}{4}\)\(-\)\(\frac{1}{5}\)\(+\)\(\frac{1}{5}\)\(-\)\(\frac{1}{6}\)

\(=\)\(\frac{1}{1}\)\(-\)\(\frac{1}{6}\)

\(=\)\(\frac{5}{6}\)

Hok tốt

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Lời giải:

$A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}$

$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{25.26}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{26-25}{25.26}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{25}-\frac{1}{26}$

$=1-\frac{1}{26}< 1$ (đpcm)

16 tháng 4 2023

đề là gì vậy bạn

3 tháng 8 2015

bạn li-ke cho I love U thì ai giải cho bạn nữa

2 tháng 6 2016

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{5\cdot6}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{5}-\frac{1}{6}\right)=1-\frac{1}{6}=\frac{5}{6}.\)