K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

                                                                  Bài giải

Nếu \(n\in N\) thì \(2n\in N\text{ }\Rightarrow\text{ }2n+1\in N\)

                               \(14n\in N\text{ }\Rightarrow\text{ }14n+5\in N\)

\(\Rightarrow\text{ Điều phải chứng minh}\)

Gọi d=ƯCLN(2n+1;2n^2-1)

=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d

=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d

=>n+1 chia hết cho d và 2n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau

23 tháng 9 2023

Đc gần 1 năm r nè:)

31 tháng 12 2017

gọi d \(\in\)BC ( 2n + 1, 6n + 5 ) thì 2n + 1 \(⋮\)d ; 6n + 5 \(⋮\)d

Do đó ( 6n + 5 ) - 3 . ( 2n + 1 ) \(⋮\)\(\Rightarrow\)\(⋮\)\(\Rightarrow\)\(\in\){ 1 ; 2 }

d là ước của số lẻ 2n + 1 nên d \(\ne\)

Vậy d = 1 

Do đó ( 2n + 1 ; 6n + 5 ) = 1

25 tháng 3 2021

chu pa pi mu nhà nhố

11 tháng 3 2017

Gọi d là UCLN(2n+1;14n+5)

->(14n+5)-(2n+1)chia hết cho d

->(14n+5)-7(2n+1) chia hết cho d

->14n+5-14n-1 chia hết cho d

->n+5-n-1

4 chia hết cho d

d thuộc {1;-1;2;-2;4;-4}

Sau đó thì bạn dùng phương pháp thử chọn nha.

23 tháng 11 2015

gọi d>0 là ước dung của 2n+1 và 6n+5

d là ước số 3(2n+1)=6n+3

(6n+5)_(6n+3)=2

suy ra d là ước của số lẻ :2n+1 suy ra d=1

vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau

**** nhé Thanh Lộc thông minh

5 tháng 8 2015

 Gọi (14n+3,21n+4)=d (d thuộc N) 
=>14n+3,21n+4 chia hết cho d 
=>3(14n+3)-2(21n+4)=1 chia hết cho d 
=>d=1 
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên n

31 tháng 10 2017

mk ko bik

10 tháng 12 2021

Gọi ƯCLN(2n+3;n+2)=d

Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d

=>2n+3 chia hết cho d; 2(n+2)chia hết cho d

=> 2n+3 chia hết cho d;2n+4 chia hết cho d

=>[2n+4-(2n+3)]chia hết cho d

=>2n+4-2n-3 chia hết cho d

=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1

Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau

20 tháng 12 2018

Gọi:

d=UCLN(n,n-1)

Ta có: n chia hết cho d

n-1 chia hết cho d

=> n-(n-1) chia hết cho d

=> 1 chia hết cho d=> d=1

Vậy: n và n-1 ntcn 

b) gọi như vậy ta có:

7(2n+1)-14n+6 chia hết cho d

=> 1 chia hết cho d=>d=1

Vậy 2n+1 và 14n+6 ntcn

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

7 tháng 12 2018

a) Đặt UCLN ( n ; n - 1 ) = d

=> n chia hết cho d ; n - 1 chia hết cho d

=> n - ( n - 1 ) chia hết cho d

=> n - n + 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> n và n - 1 là 2 số nguyên tố cùng nhau

b,Đặt UCLN ( 2n + 1 ; 14n + 6 ) = d

=> 2n + 1 chia hết cho d ; 14n + 6 chia hết cho d

=> 7 ( 2n + 1 ) chia hết cho d ; 14n + 6 chia hết cho d

=> 14n + 7 chia hết cho d ; 14n + 6 chia hết cho d

=> ( 14n + 7 ) - ( 14n + 6 ) chia hết cho d

=> 14n + 7 - 14n - 6  chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n + 1 và 14n + 6 là 2 số nguyên tố cùng nhau