CMR: Lập phương 3 số tự nhiên liên tiếp sẽ chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi 3 số tự nhiên liên tiếp là $a,a+1, a+2$
Tổng lập phương của 3 số tự nhiên liên tiếp:
$a^3+(a+1)^3+(a+2)^3=3a^3+9a^2+15a+9$
$=3(a^3+3a^2+5a+3)$
$=3(a+1)(a^2+2a+3)$
Nếu $a$ chia hết cho $3$ thì $a^2+2a+3\vdots 3$
$\Rightarrow 3(a+1)(a^2+2a+3)\vdots 9$
Nếu $a$ chia $3$ dư $1$
$\Rightarrow a+2\vdots 3\Rightarrow a(a+2)\vdots 3$
$\Rightarrow a^2+2a+3=a(a+2)+3\vdots 3$
$\Rightarrow 3(a+1)(a^2+2a+3)\vdots 9$
Nếu $a$ chia $3$ dư $2$ thì $a+1\vdots 3$
$\Rightarrow 3(a+1)(a^2+2a+3)\vdots 9$
Từ các TH trên suy ra $a^3+(a+1)^3+(a+2)^3=3(a+1)(a^2+2a+3)\vdots 9$ với mọi $a$
a)Ta gọi ba số tự nhiên liên tiếp là:n;n+1;n+2
Tổng của ba số đó là:
n+(n+1)+(n+2)
=n+n+1+n+2
=(n+n+n)+(1+2)
=3n+3
=3(n+1\(⋮\)
=> tổng ba STN liên tiếp chia hết cho 3
b)làm tương tự nha!!
k nha
1.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5
Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4
Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120
2.(Tương tự)
3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16
Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)
Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.
4.
Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128
Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)
Do đó tích chia hết cho 3*128=384
5.
\(m^3-m=m\left(m-1\right)\left(m+1\right)\)
Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
Nên \(m^3-m\)chia hết cho 2*3=6
Gọi 3 số đó lần lượt là a+1,a+2,a+3. Theo đề bài,ta cần chứng minh:
\(\left(a+1+a+2+a+3\right)^3⋮9\) hay \(\left(3a+6\right)^3⋮9\)
Ta có: \(\left(3a+6\right)^3=\left(3a+6\right)\left(9a^2-180a+36\right)\) (Hằng đẳng thức đáng nhớ)
\(=9\left(3a+6\right)\left(a^2-20a+4\right)⋮9^{\left(đpcm\right)}\)
Quá đơn giản!
Ba số nguyên liên tiếp là n, n + 1, n + 2 , ta phải c/m :
\(A=n^3+(n+1)^3+(n+2)^3⋮9\)
Ta có : \(A=n^3+(n+1)^3+(n+2)^3=3n^3+9n^2+15n+9\)
\(=3n^3-3n+18n+9n^2+9=3n(n-1)(n+1)+18n+9+9n^2\)
n, n - 1, n + 1 là ba số nguyên liên tiếp,trong đó có một số chia hết cho 3
Vậy : \(B=3n(n-1)(n+1)⋮9\)
\(C=18n+9n^2+9⋮9\)
=> \(A=B+C\)mà \(\hept{\begin{cases}B⋮9\\C⋮9\end{cases}}\Rightarrow A⋮9\)
hu hu.. ! lần này mình tự làm nếu còn giống của bạn nào thì đừng bảo mình coppy nhé ! cai nay tu minh biet nen minh tu lam day !
Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1)
chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9
=>(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a
= >3a(a^2 + 2) = 3a(a^2 - 1) + 9a
= >3(a - 1)a(a + 1) + 9a
ta da biet tíck của 3 sô tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9
Mặt khác 9a chia hết cho 9 nên
=>3(a - 1)a(a + 1) + 9a
hay ta dc điều phải chứng minh
gọi ba số tự nhiên đó là a,a+1,a+2
theo bài ta có
(a+a+1+a+2)3
=(a+a+a+1+2)3
=(a+a+a+3)3
=(a+a+a)3+27
mà (a+a+a)3 chia hết cho 3
nên (a+a+a)3 chia het cho 9
do 27 chia het cho 9
nen (a+a+a)3+27 chia het cho 9
vậy ............................
mình chưa hiểu đề lắm
sao lại lập phương 3 số tự nhiên liên tiếp
gọi 3 số tự nhiên liên tiếp là a-1;a;a+1
ta có
\(\left(a-1\right)^3+a^3+\left(a+1\right)^3=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)
\(=3a^3+6a=3a^3-3a+9a=3a\left(a^2-1\right)+9a=3\left(a-1\right)a\left(a+1\right)+9a\)
vì tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
\(\Rightarrow3\left(a-1\right)a\left(a+1\right)⋮9\)
mà \(9a⋮9\)
vậy lập phương 3 số tự nhiên liên tiếp chia hết cho 9