cap so x,y nao thoa man dang thuc: 3^2x+1.2^y=9.21^x
GIUP MIK NHA !! <3<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0
<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0
<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0
<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0
<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0
<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0
<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8
<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8
<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8
<=> 4(x + y + 4)( - 4x - 2y - 2) = 8
<=> (x + y + 4)( 2x + y + 1) = -1
=>
{x + y + 4 = -1
{2x + y + 1 = 1
=> x = 2 và y = - 4
{x + y + 4 = 1
{2x + y + 1 = - 1
=> x = - 2 và y = 2
vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)
^^ ko hiểu thì bình luận
\(\frac{4}{x}=\frac{5-2y}{3}\Leftrightarrow x\left(5-2y\right)=12\)
Do \(x,y\)là số nguyên nên \(x,5-2y\)là các ước của \(12\)mà \(5-2y\)là số lẻ nên ta có bảng giá trị:
5-2y | 1 | 3 | -1 | -3 |
x | 12 | 4 | -12 | -4 |
y | 2 | 1 | 3 | 4 |
Vậy phương trình có các nghiệm là: \(\left(12,2\right),\left(4,1\right),\left(-12,3\right),\left(-4,4\right)\).
Có: \(x^3-y^3=-3xy\left(y-x\right)\)
\(\Leftrightarrow x^3-y^3=-3xy^2+3x^2y\)
\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3=0\)
\(\Leftrightarrow\left(x-y\right)^3=0\)
\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Khi đó bt A trở thành:
\(A=\left(2x-y\right)\left(y-2x\right)\left(y-y\right)^2=\left(2x-y\right)\left(y-2x\right)\cdot0=0\)
\(P=\frac{1}{5xy}+\frac{xy}{20}+\frac{5}{x+2y+5}+\frac{x+2y+5}{20}-\frac{xy}{20}-\frac{x+2y+5}{20}\)
\(\ge2\sqrt{\frac{1}{5xy}.\frac{xy}{20}}+2.\sqrt{\frac{5}{x+2y+5}.\frac{x+2y+5}{20}}-\frac{x\left(3-x\right)+x+2\left(3-x\right)+5}{20}\)
\(=2.\frac{1}{10}+2.\frac{1}{2}-\frac{-x^2+2x+11}{20}\)
\(=\frac{x^2-2x+1}{20}+\frac{3}{5}=\frac{\left(x-1\right)^2}{20}+\frac{3}{5}\ge\frac{3}{5}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{5xy}=\frac{xy}{20}\\\frac{5}{x+2y+5}=\frac{x+2y+5}{20}\\\left(x-1\right)^2=0,x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\x+2y+5=10\\x=1,x+y=3\end{cases}\Leftrightarrow}x=1,y=2\)
Vậy min P=3/5 khi x=1, y=2
Em co cach nay ngan gon hon, cac ban co the tham khao
P=\(\frac{1}{5xy}\) + \(\frac{5}{x+2y+5}\)=\(\frac{1}{5xy}\)+\(\frac{25}{5\left(x+2y+5\right)}\)
= \(\frac{1^2}{5xy}\)+\(\frac{5^2}{5\left(x+2y+5\right)}\)
\(\geq\) \(\frac{\left(1+5\right)^{^2}}{5xy+5\left(x+2y+5\right)}\)
=\(\frac{36}{5\left(xy+x+2y+2+3\right)}\)
=\(\frac{36}{5\left(\left(x+2\right)\left(y+1\right)+3\right)}\)
=\(\frac{36}{5\left(\frac{\left(x+y+3\right)^2}{4}+3\right)}\) (do \((x+2)(y+1) \leq \frac {(x+y+3)^2}{4}\) )
=\(\frac{36}{5\left(\frac{\left(3+3\right)^2}{4}+3\right)}\) (do \(x+y \leq 3\) )
=\(\frac{3}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{5xy}=\frac{1}{x+2y+5}\\x+2=y+1\\x+y=3\end{cases}}\Leftrightarrow x=2,y=1\)
Vậy GTNN của P là 3/5 khi và chỉ khi x=2,y=1
MIK DANG CAN GAP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!